Tag Archives: testing

Digital Transformation of the Enterprise (with a side of Big Data)

Since I finished Measuring the Digital World and got back to regular blogging, I’ve been writing an extended series on the challenges of digital in the enterprise. Like many analysts, I’m often frustrated by the way our clients approach decision-making. So often, they lack any real understanding of the customer journey, any effective segmentation scheme, any real method for either doing or incorporating analytics into their decisioning, anything more than a superficial understanding of their customers, and anything more than the empty façade of a testing program. Is it any surprise that they aren’t very good at digital? This would be frustrating but understandable if companies simply didn’t invest in these capabilities. They aren’t magic, and no large enterprise can do these things without making a significant investment. But, in fact, many companies have invested plenty with very disappointing results. That’s maddening. I want to change that – and this series is an extended meditation on what it takes to do better and how large enterprises might truly gain competitive advantage in digital.

I hope that reading these posts is useful to people, but I know, too, that it’s hard to get the time. Heaven knows I struggle to read the stuff I’d like to. So I took advantage of the slow time over the holidays to do something that’s been on my wish list for about 2 years now – take some of the presentations I do and turn them into full online webinars. I started with a whole series that captures the core elements of this series – the challenge of digital transformation.

There are two versions of this video series. The first is a set of fairly short (2-4 minute) stories that walk through how enterprise decision-making gets done, what’s wrong with the way we do it, and how we can do better. It’s a ten(!) part series and meant to be tackled in order. It’s not really all that long…like I said, most of the videos are just 2-4 minutes long. I’ve also packaged up the whole story (except Part 10) in single video that runs just a little over 20 minutes. It’s shorter than viewing all 10 of the others, but you need a decent chunk of uninterrupted time to get at it. If you’re really pressed and only want to get the key themes without the story, you can just view Parts 8-10.

Here’s the video page that has all of these laid out in order:

Digital Transformation Video Series

Check it out and let me know what you think! To me it seems like a faster, better, and more enjoyable way to get the story about digital transformation and I’m hoping it’s very shareable as well. If you’re struggling to get analytics traction in your organization, these videos might be an easy thing to share with your CMO and digital channel leads to help drive real change.

I have to say I enjoyed doing these a lot and they aren’t really hard to do. They aren’t quite professional quality, but I think they are very listenable and I’ll keep working to make them better. In fact, I enjoyed doing the digital transformation ones so much that I knocked out another this last week – Big Data Explained.

This is one of my favorite presentations of all time – it’s rich in content and intellectually interesting. Big data is a subject that is obscured by hype, self-interest, and just plain ignorance; everyone talks about it but no one has a clear, cogent explanation of what it is and why it’s important. This presentation deconstructs the everyday explanation about big data (the 4Vs) and shows why it misses the mark. But it isn’t designed to merely expose the hype, it actually builds out a clear, straightforward and important explanation of why big data is real, why it challenges common IT and analytics paradigms, and how to understand whether a problem is a big data problem…or not. I’ve written about this before, but you can’t beat a video with supporting visuals for this particular topic. It’s less than fifteen minutes and, like the digital transformation series, it’s intended for a wide audience. If you have decision-makers who don’t get big data or are skeptical of the hype, they’ll appreciate this straightforward, clear, and no-nonsense explication of what it is.

You can get it on my video page or direct on Youtube

This is also a significant topic toward the end of Measuring the Digital World where I try to lay out a forward looking plan for digital analytics as a discipline.

I’m planning to do a steady stream of these videos throughout the year so I’d love thoughts/feedback if you have suggestions!

Next week I hope to have an update on my EY Counseling Family’s work in the 538 Academy Awards challenge. We’ve built our initial Hollywood culture models – it’s pretty cool stuff and I’m excited to share the results. Our model may not be as effective as some of the other challengers (TBD), but I think it’s definitely more fun.

Controlled Experimentation and Decision-Making

The key to effective digital transformation isn’t analytics, testing, customer journeys, or Voice of Customer. It’s how you blend these elements together in a fundamentally different kind of organization and process. In the DAA Webinar (link coming) I did this past week on Digital Transformation, I used this graphic to drive home that point:

I’ve already highlighted experience engineering and integrated analytics in this little series, and the truth is I wrote a post on constant customer research too. If you haven’t read it, don’t feel bad. Nobody has. I liked it so much I submitted it to the local PR machine to be published and it’s still grinding through that process. I was hoping to get that relatively quickly so I could push the link, but I’ve given up holding my breath. So while I wait for VoC to emerge into the light of day, let’s move on to controlled experimentation.

I’ll start with definitional stuff. By controlled experimentation I do mean testing, but I don’t just mean A/B testing or even MVT as we’ve come to think about it. I want it to be broader. Almost every analytics project is challenged by the complexity of the world. It’s hard to control for all the constantly changing external factors that drive or impact performance in our systems. What looks like a strong and interesting relationship in a statistical analysis is often no more than an artifact produced by external factors that aren’t being considered. Controlled experiments are the best tool there is for addressing those challenges.

In a controlled experiment, the goal is to create a test whereby the likelihood of external factors driving the results is minimized. In A/B testing, for example, random populations of site visitors are served alternative experiences and their subsequent performance is measured. Provided the selection of visitors into each variant of the test is random and there is sufficient volume, A/B tests make it very unlikely that external factors like campaign sourcing or day-time parting will impact the test results. How unlikely? Well, taking a random sample doesn’t guarantee randomness. You can flip a fair coin fifty times and get fifty heads so even a sample collected in a fully random manner may come out quite biased; it’s just not very likely. The more times you flip, the more likely your sample will be representative.

Controlled experiments aren’t just the domain of website testing though. They are a fundamental part of scientific method and are used extensively in every kind of research. The goal of a controlled experiment is to remove all the variables in an analysis but one. That makes it really easy to analyze.

In the past, I’ve written extensively on the relationship between analytics and website testing (Kelly Wortham and I did a whole series on the topic). In that series, I focused on testing as we think of it in the digital world – A/B and MV tests and the tools that drive those tests. I don’t want to do that here, because the role for controlled experimentation in the digital enterprise is much broader than website testing. In an omni-channel world, many of the most important questions – and most important experiments – can’t be done using website testing. They require experiments which involve the use, absence or role of an entire channel or the media that drives it. You can’t build those kinds of experiments in your CMS or your testing tool.

I also appreciate that controlled experimentation doesn’t carry with it some of the mental baggage of testing. When we talk testing, people start to think about Optimizely vs. SiteSpect, A/B vs. MVT, landing page optimization and other similar issues. And when people think about A/B tests, they tend to think about things like button colors, image A vs. image B and changing the language in a call-to-action. When it comes to digital transformation, that’s all irrelevant.

It’s not that changing the button colors on your website isn’t a controlled experiment. It is; it’s just not a very important one. It’s also representative of the kind of random “throw stuff at a wall” approach to experimentation that makes so many testing programs nearly useless.

One of the great benefits of controlled experimentation is that, done properly, the idea of learning something useful is baked into the process. When you change the button color on your Website, you’re essentially framing a research question like this:

Hypothesis: Changing the color of Button X on Page Y from Red to Yellow will result in more clicks of the button per page view

An A/B test will indeed answer that question. However, it won’t necessarily answer ANY other question of higher generality. Will changing the color of any other button on any other page result in more clicks? That’s not part of the test.

Even with something as inane as button colors, thinking in terms of a controlled experiment can help. A designer might generalize this hypothesis to something that’s a little more interesting. For example, the hypothesis might be:

Hypothesis: Given our standard color pallet, changing a call-to-action on the page to a higher contrast color will result in more clicks per view on the call-to-action

That’s a somewhat more interesting hypothesis and it can be tested with a range of colors with different contrasts. Some of those colors might produce garish or largely unreadable results. Some combinations might work well for click-rates but create negative brand impressions. That, too, can be tested and might perhaps yield a standardized design heuristic for the right level of contrast between the call-to-action and the rest of a page given a particular color palette.

The point is, by casting the test as a controlled experiment we are pushed to generalize the test in terms of some single variable (such as contrast and its impact on behavior). This makes the test a learning experience; something that can be applied to a whole set of cases.

This example could be read as an argument for generalizing isolated tests into generalized controlled experiments. That might be beneficial, but it’s not really ideal. Instead, every decision-maker in the organization should be thinking about controlled experimentation. They should be thinking about it as way to answer questions analytics can’t AND as a way to assess whether the analytics they have are valid. Controlled experimentation, like analytics, is a tool to be used by the organization when it wants to answer questions. Both are most effective when used in a top-down not a bottom-up fashion.

As the sentence above makes clear, controlled experimentation is something you do, but it’s also a way you can think about analytics – a way to evaluate the data decision-makers already have. I’ve complained endlessly, for example, about how misleading online surveys can be when it comes to things like measuring sitewide NPS. My objection isn’t to the NPS metric, it’s to the lack of control in the sample. Every time you shift your marketing or site functionality, you shift the distribution of visitors to your website. That, in turn, will likely shift your average NPS score – irrespective of any other change or difference. You haven’t gotten better or worse. Your customers don’t like you less or more. You’ve simply sampled a somewhat different population of visitors.

That’s a perfect example of a metric/report which isn’t very controlled.  Something outside what you are trying to measure (your customer’s satisfaction or willingness to recommend you) is driving the observed changes.

When decision-makers begin to think in terms of controlled experiments, they have a much better chance of spotting the potential flaws in the analysis and reporting they have, and making more risk-informed decisions. No experiment can ever be perfectly controlled. No analysis can guarantee that outside factors aren’t driving the results. But when decision-makers think about what it would take to create a good experiment, they are much more likely to interpret analysis and reporting correctly.

I’ve framed this in terms of decision-makers, but it’s good advice for analysts too. Many an analyst has missed the mark by failing to control for obvious external drivers in their findings. A huge part of learning to “think like an analyst” is learning to evaluate every analysis in terms of how to best approximate a controlled experiment.

So if controlled experimentation is the best way to make decisions, why not just test everything? Why not, indeed? Controlled experimentation is tremendously underutilized in the enterprise. But having said as much, not every problem is amenable to or worth experimenting on. Sometimes, building a controlled experiment is very expensive compared to an analysis; sometimes it’s not. With an A/B testing tool, it’s often easier to deploy a simple test than try to conduct and analysis of a customer preference. But if you have an hypothesis that involves re-designing the entire website, building all that creative to run a true controlled experiment isn’t going to be cheap, fast or easy.

Media mix analysis is another example of how analysis/experimentation trade-offs come into play. If you do a lot of local advertising, then controlled experimentation is far more effective than mix modeling to determine the impact of media and to tune for the optimum channel blend. But if much of your media buy is national, then it’s pretty much impossible to create a fully controlled experiment that will allow you to test mix hypotheses. So for some kinds of marketing organizations, controlled experimentation is the best approach to mix decisions; for others, mix modelling (analysis in other words – though often supplemented by targeted experimentation) is the best approach.

This may all seem pretty theoretical, so I’ll boil it down to some specific recommendations for the enterprise:

  • Repurpose you’re A/B testing group as a controlled experimentation capability
  • Blend non-digital analytics resources into that group to make sure you aren’t thinking too narrowly – don’t just have a bunch of people who think A/B testing tools
  • Integrate controlled experimentation with analytics – they are two sides of the same coin and you need a single group that can decide which is appropriate for a given problem
  • Train your executives and decision-makers in experimentation and interpreting analysis – probably with a dedicated C-Suite resource
  • Create constant feedback loops in the organization so that decision-makers can request new survey questions, new analysis and new experiments at the same time and with the same group

I see lots of organizations that think they are doing a great job testing. Mostly they aren’t even close. You’re doing a great job testing when every decision maker at every level in the organization is thinking about whether a controlled experiment is possible when they have to make a significant decision. When those same decision-makers know how to interpret the data they have in terms of its ability to approximate a controlled experiment. And when building controlled experiments is deeply integrated into the analytics research team and deployed across digital and omni-channel problems.

Full Spectrum Analytics

Enterprises do analytics. They just don’t use analytics.

That’s the first, and for me the most frustrating, of the litany of failures I listed in my last post that drive digital incompetence in the enterprise. Most readers will assume I mean by this assertion that organizations spend time analyzing the data but then do nothing to act on the implications of that analysis. That’s true, but it’s only a small part of what I mean when I say the enterprises don’t use analytics. Nearly every enterprise that I work with or talk to has a digital analytics team ranging in size from modest to substantial. Some of these teams are very strong, some aren’t. But good or not-so-good, in almost every case, their efforts are focused on a very narrow range of analysis. Reporting on and attributing digital marketing, reporting on digital consumption, and conversion rate optimization around the funnel account for nearly all of the work these organizations produce.

Is that really all there is too digital analytics?

Though I’ve been struggling to find the right term (I’ve called it full-stack, full-spectrum and top-down analytics), the core idea is the same – every decision about digital at every level in the enterprise should be analytically driven. C-Level decision-makers who are deciding how much to invest in digital and what types of products or big-initiatives might bear fruit, senior leaders who are allocating budget and fleshing out major campaigns and initiatives, program managers who are prioritizing audiences, features and functionality, designers who are building content or campaign creative; every level and every decision should be supported and driven by data.

That simply isn’t the case at any enterprise I know. It isn’t even close to the case. Not even at the very best of the best. And the problem almost always begins at the top.

How do really senior decision-makers decide which products to invest in and how to carve up budgets? From a marketing perspective, there are organizations that efficiently use mix-modeling to support high-level decisions around marketing spend. That’s a good thing, but it’s a very small part of the equation. Senior decision-makers ought to have constantly before them a comprehensive and data-driven understanding of their customer types and customer journeys. They ought to understand which of those journeys they as a business perform well at and at which they lag behind. They ought to understand what audiences they don’t do well with, and what the keys to success for that audience are. They ought to have a deep understanding of how previous initiatives have impacted those audiences and journeys – which have been successful and which have failed.

This mostly just doesn’t exist.

Journey mapping in the organization is static, old-fashioned, non-segmented and mostly ignored. There’s no VoC surfaced to decision-makers except NPS – which is entirely useless for actually understanding your customers (instead of understanding what they think about you). There is no monitoring of journey success or failure – either overall or by audience. Where journey maps exist, they exist entirely independent of KPIs and measurement. There is no understanding of how initiatives have impacted either specific audiences or journeys. There is no interesting tracking of audiences in general, no detailed briefings about where the enterprise is failing, no deep-dives into potential target populations and what they care about. In short, C-Level decision-makers get almost no interesting or relevant data on which to base the types of decisions they actually need to make.

Given that complete absence of interesting data, what you typically get is the same old style of decision-making we’ve been at forever. Raise digital budgets by 10% because it sounds about right.  Invest in a mobile app because Gartner says mobile is the coming thing. Create a social media command center because company X has one. This isn’t transformation. It isn’t analytics. It isn’t right.

Things don’t get better as you descend the hierarchy of an organization. The senior leaders taking those high-level decisions and fleshing out programs and initiatives lack all of those same things the C-Level folks lack. They don’t get useful VoC, interesting and data-supported journey mapping, comprehensive segmented performance tracking, or interesting analysis of historical performance by initiative either. They need all that stuff too.

Worse, since they don’t have any of those things and aren’t basing their decisions on them, most initiatives are shaped without having a clear business purpose that will translate into decisions downstream around targeting, creative, functionality and, of course, measurement.

If you’re building a mobile app to have a mobile app, not because you need to improve key aspects of a universally understood and agreed upon set of customer journeys for specific audiences, how much less effective will all of the downstream decisions about that app be? From content development to campaign planning to measurement and testing, a huge number of enterprise digital initiatives are crippled from the get-go by the lack of a consistent and clear vision at the senior levels about what they are designed to accomplish.

That lack of vision is, of course, fueled by a gaping hole in enterprise measurement – the lack of a comprehensive, segmented customer journey framework that is the basis for performance measurement and customer research.

Yes, there are pockets in the enterprise where data is used. Digital campaigns do get attributed (sometimes) and optimized (sometimes). Funnels do get improved with CRO. But even these often ardent users of data work, almost always, without the big picture. They have no better framework or data around that big-picture than anyone else and, unlike their counterparts in the C-Suite, they tend to be focused almost entirely on channel level concerns. This leads, inevitably, to a host of sub-optimal but fully data-driven decisions based on a narrow view of the data, the customer, and the business function.

There are, too, vast swathes of the mid and low level digital enterprise where data is as foreign to day-to-day operations as Texas BBQ would be in Timbuktu. The agencies and internal teams that create campaigns, build content and develop tools live their lives gloriously unconstrained by data. They know almost nothing of the target audiences for which the content and campaigns are built, they have no historical tracking of creative or feature delivery correlated to journey or audience success, they get no VoC information about what those audiences lack, struggle with or make decisions using. They lack, in short, the basic data around which they might understand why they are building an experience, what it should consist of, and how it should address the specific target audiences. They generally have no idea, either, how what they build will be measured or which aspects of its usage will be chosen by the organization as Key Performance Indicators.

Take all this together and what it means is that even in the enterprise with a strong digital analytics department, the overwhelming majority of decisions about digital – including nearly all the most important choices – are made with little or no data.

This isn’t a worst-case picture. It’s almost a best-case picture. Most organizations aren’t even dimly aware of how much they lack when it comes to using data to drive digital decision-making.  Their view of digital analytics is framed by a set of preconceptions that limit its application to evaluating campaign performance or optimizing funnels.

That’s not full-spectrum analytics. It’s one little ray of light – and that a sickly, purplish hue – cast on an otherwise empty gray void. To transform the enterprise around digital – to be really good at digital with all the competitive advantage that implies – it takes analytics. But by analytics I don’t mean this pale, restricted version of digital analytics that claims for its territory nothing but a small set of choices around which marketing campaign to invest in. I mean, instead, a form of analytics that provides support for decision-makers of every type and at every level in the organization. An analytics that provides a common understanding throughout the enterprise of who your customers are, what journeys they have, which journeys are easy and which a struggle for each type of customer, detailed and constantly improving profiles of those audiences and those journeys and the decision-making and attitudes that drive them, and a rich understanding of how initiatives and changes at every level of the enterprise have succeeded, failed, or changed those journeys over time.

You can’t be great, or even very good, at digital without all this.

A flat-out majority of the enterprises I talk to these days are going on about transforming themselves with digital and all that implies for customer-centricity and agility. I’m pretty sure I know what they mean. They mean creating a siloed testing program and adding five people to their digital analytics team. They mean tracking NPS with their online surveys. They mean the sort of “agile” development that has lead the original creators of agile to abandon the term in despair. They mean creating a set of static journey maps which are used once by the web design team and which are never tied to any measurement. They mean, in short, to pursue the same old ways of doing business and of making decisions with a gloss of digital best practices that change almost nothing.

It’s all too easy to guess how transformative and effective these efforts will be.

Digital Transformation

With a full first draft of my book in the hands of the publishers, I’m hoping to get back to a more regular schedule of blogging. Frankly, I’m looking forward to it. It’s a lot less of a grind than the “everyday after work and all day on the weekends pace” that was needful for finishing “Measuring the Digital World”! I’ve also accumulated a fair number of ideas for things to talk about; some directly from the book and some from our ongoing practice.

The vast majority of “Measuring the Digital World” concerns topics I’ve blogged about many times: digital segmentation, functionalism, meta-data, voice-of-customer, and tracking user journeys. Essentially, the book proceeds by developing a framework for digital measurement that is independent of any particular tool, report or specific application. It’s an introduction not a bible, so it’s not like I covered tons of new ground.  But, as will happen any time you try to voice what you know, some new understandings did emerge. I spent most of a chapter trying to articulate how the impact of self-selection and site structure can be handled analytically; this isn’t new exactly, but some of the concepts I ended up using were. Sections on rolling your own experiments with analytics not testing, and the idea of use-case demand elasticity and how to measure it, introduced concepts that crystallized for me only as I wrote them down. I’m looking forward to exploring those topics further.

At the same time, we’ve been making significant strides in our digital analytics practice that I’m eager to talk about. Writing a book on digital analytics has forced me to take stock not only of what I know, but also of where we are in our profession and industry. I really don’t know if “Measuring the Digital World” is any good or not (right now, at least, I am heartily sick of it), but I do know it’s ambitious. Its goal is nothing less than to establish a substantive methodology for digital analytics. That’s been needed for a long time. Far too often, analysts don’t understand how measurement in digital actually works and are oblivious to the very real methodological challenges it presents. Their ignorance results in a great deal of bad analysis; bad analysis that is either ignored or, worse, is used by the enterprise.

Even if we fixed all the bad analysis, however, the state of digital analytics in the enterprise would still be disappointing. Perhaps even worse, the state of digital in the enterprise is equally bad. And that’s really what matters. The vast majority of companies I observe, talk to, and work with, aren’t doing digital very well. Most of the digital experiences I study are poorly integrated with offline experiences, lack any useful personalization, have terribly inefficient marketing, are poorly optimized by channel and – if at all complex – harbor major usability flaws.

This isn’t because enterprises don’t invest in digital. They do. They spend on teams, tools and vendors for content development and deployment, for analytics, for testing, and for marketing. They spend millions and millions of dollars on all of these things. They just don’t do it very well.

Why is that?

Well, what happens is this:

Enterprises do analytics. They just don’t use analytics.

Enterprises have A/B testing tools and teams and they run lots of tests. They just don’t learn anything.

Enterprises talk about making data-driven decisions. They don’t really do it. And the people who do the most talking are the worst offenders.

Everyone has gone agile. But somehow nothing is.

Everyone says they are focused on the customer. Nobody really listens to them.

It isn’t about doing analytics or testing or voice of customer. It’s about finding ways to integrate them into the organization’s decision-making. In other words, to do digital well demands a fundamental transformation in the enterprise. It can’t be done on a business as usual basis. You can add an analytics team, build an A/B testing team, spend millions on attribution tools, Hadoop platforms, and every other fancy technology for content management and analytics out there. You can buy a great CMS with all the personalization capabilities you could ever demand. And almost nothing will change.

Analytics, testing, VoC, agile, customer-focus…these are the things you MUST do if you are going to do digital well. It isn’t that people don’t understand what’s necessary. Everyone knows what it takes. It’s that, by and large, these things aren’t being done in ways that drive actual change.

Having the right methodology for digital analytics is a (small) part of that. It’s a way to do digital analytics well. And digital analytics truly is essential to delivering great digital experiences. You can’t be great – or even pretty good – without it. But that’s clearly not enough. To do digital well requires a deeper transformation; it’s a transformation that forces the enterprise to blend analytics and testing into their DNA, and to use both at every level and around every decision in the digital channel.

That’s hard. But that’s what we’re focusing on this year. Not just on doing analytics, but on digital transformation. We’re figuring out how to use our team, our methods, and our processes to drive change at the most fundamental level in the enterprise – to do digital differently: to make decisions differently, to work differently, to deliver differently and, of course, to measure differently.

As we work through delivering on digital transformation, I plan to write about that journey as well: to describe the huge problems in the way most enterprises actually do digital, to describe how analytics and testing can be integrated deep into the organization, to show how measurement can be used to change the way organizations actually think about and understand their customers, and to show how method and process can be blended to create real change. We want to drive change in the digital experience and, equally, change in the controlling enterprise, for it is from the latter that the former must come if we are to deliver sustained success.