Tag Archives: retail analytics

An Overview of In-Store Tracking Technology

How does it work? Can you really do this? Is it legal? Those are the questions that I get asked the most about in-store customer journey tracking. The same kind of questions, to be honest, I used to get fifteen years ago in digital analytics. And when you have to answer questions like these, you know it’s still pretty raw out there. Collection technologies are a core part of measurement – whether it’s tags in digital analytics or PCAP files for in-store customer tracking. Technology matters. And with in-store tracking, the data collection technologies aren’t half-baked, but they aren’t well-cooked either.

Here’s what you need to know:

Collection Technologies

There are four (!) common approaches to in-store customer tracking: camera, wifi, passive network and mobile apps. Each has distinct characteristics and at least some advantages and disadvantages. Camera is pretty easy to understand. The cameras used for in-store measurement are video. Each camera has on-board processors that identify people, “blob” them, and then track them across their field of view. This yields a stream of data that is positionally very accurate and can also identify basic demographics around each visitor. The anonymized data is then passed to a central server where systems like ours can use it.

Your existing WiFi system can also be used to track customer journey data. This works whether or not people login to your access points. Phones regularly ping out looking for a network and those pings – anonymized – can be triangulated to figure out the position. Put those pings together, and you have a journey. One of the best things about WiFi tracking is that almost everybody already has the necessary hardware in place. That means there’s no new installation; and most of the top-tier providers of internet access points make it super easy to route the data directly to your cloud-based system. Often at no additional cost.

Passive network sniffers are small WiFi-like devices designed explicitly for in-store measurement. They work on principles similar to WiFi but they solve some problems that WiFi doesn’t. They track multiple bands, not just passive WiFi pings, and they can deliver better positional accuracy because they can be deployed in very large numbers quite cost-effectively.

Lastly, you can use code inside a mobile application to track the customer journey. Mobile apps can deliver a steady stream of positional data and have the unique benefit of being able to tie that data to the customer’s digital in-app experience.

So what’s not to like?

Well, each technology has some significant issues.

Cameras are expensive, installation is a challenge, each camera only covers a small zone, and camera systems do a remarkably poor job stitching together the customer journey. So as typically delivered, camera systems cost a lot and deliver limited measurement.

WiFi isn’t very accurate positionally – meaning it can’t be used effectively for much beyond door-counting in smaller and mid-size retail spaces. Worse, changes in MAC randomization in the IoS world have essentially eliminated the ability of WiFi systems to passively track customers with Apple devices. That means you either depend on users to connect to your WiFi (which does yield stable measurement) or you only measure your Android customers. Two bad solutions don’t add up to a good one.

Passive network sniffers improve on WiFi in terms of positional accuracy and their ability to fingerprint devices. But they don’t solve those problems perfectly and, of course, they don’t give you the no-installation, no hardware cost convenience that WiFi did.

Measurement using mobile apps? That’s great, just like everything with mobile apps provided you can get customers to actually download the app. Depending on customer app downloads for measurement is inherently a limiting factor.

Bottom line? There are places and times for every technology and there are ways to combine the technologies to yield better results (we do that). But this isn’t measurement nirvana. No solution is perfect and you’ll find plenty of things to hate in any direction you choose.

To get more detail on the ins-and-outs of in-store customer journey tracking technology (and it’s complicated), ping me. I’ll send you a DM whitepaper that gives you everything you need to know to choose wisely!

I’ll tackle practicality and legality next time!

Ground Zero for the Retail Apocalypse: Mall Analytics

Overbuilt. Underused. Under-siege. Mall traffic has declined precipitously in the last decade and the need to aggressively drive traffic via better experience is a matter of plain survival. That need for traffic has led to dramatic changes in the way malls are designed and executed – making them more experiental and less anchored. But if you can’t measure the impact of an experience by segment, how you can possibly drive continuous improvement?

Malls are a hybrid case of physical location measurement: a large public space but one in which elements of store tracking are clearly present. Of course, most malls already have a basic counting infrastructure. They track the high-level flow of customers and can help individual stores evaluate their overall share as well as document the populations they deliver.

But with the way malls are changing, there are opportunities and new uses for customer journey tracking that can dramatically improve mall analytics. Not only are malls becoming more experiential, anchors are becoming more diverse and traffic patterns more complex. These days, it really isn’t good enough to understand broad traffic patterns without being able to segment and group customers meaningfully. To really optimize experience and design, you need to know more than how many customers passed through. You need to understand what customers did, in what order, and in what combinations.

Fortunately (because this is a big cost driver), Malls don’t require high positional accuracy in measurement. But they absolutely require the ability to track journeys and define segments. Zone counting just won’t cut it. It’s critical to be able to measure experience usage and tie that to actual store visits and to USE that knowledge to continuously tune experiences. It’s just as important to be able to track over-time usage of the malls. A lot of interesting store analytics happens at the visit level. Visitor is far more important for a mall evaluating experience drivers. If the key metric being optimized is repeat visits and you can’t track that, what’s the point?

Finally, malls are like stadiums in that they can expect reasonable rates of wifi access and have increasingly focused on building out CRM and digital marketing efforts to drive traffic. Adding tracking data to that equation delivers far better segmentation and relevancy (and segmentation and relevancy determine success) and makes it possible to bring straightforward remarketing techniques to bear on your customer marketing. It’s no surprise that we see so many re-marketing display ads these days. It’s the only form of display that even remotely works. Re-marketing based on store visit is a big shot in the arm to mall CRM relevancy and a great way to build partnerships and deliver added value from mall analytics. And, as an added bonus, you get dramatically better insight into whether or not those CRM efforts are actually working!

Key Questions

  • How do mall anchor experiences draw and how do their users interact with the rest of the mall?
  • How do changes in experience impact store usage and success by segment?
  • What shopping segments exist and how can segmentation be used to maximize CRM relevancy?
  • What experiences create return visits & increased over time consumption?
  • What experience data can be used to optimize digital communications?

For more information about in-store customer tracking and analytics, drop me a line.

Taking In-Store Measurement…Out of the Store

In my last few posts, I explained what in-store journey analytics is, described the basics of the technology and the data collection used, and went into some detail about its potential business uses. Throughout, and especially in that last part around business uses, I wrote on the assumption that this type of measurement is all about retail stores. After all, brick & mortar stores are the primary focus of Digital Mortar AND of nearly every company in the space. But here’s the thing, this type of measurement is broadly applicable to a wide variety of applications where customer movement though a physical environment is a part of the experience. Stadiums, malls, resorts, cruise ships, casinos, events, hospitals, retail banks, airports, train stations and even government buildings and public spaces can all benefit from understanding how physical spaces can be optimized to drive better customer or user experiences.

In these next few posts, I’m going to step outside the realm of stores and talk about the opportunities in the broader world for customer journey tracking. I’ll start by tackling some of the differences between the tracking technologies and measurement that might be appropriate in some of these areas versus retail, and then I’m going to describe specific application areas and delve a little deeper into how the technology might be used differently than in traditional retail. While the underlying measurement technology can be very similar, the type of reporting and analytics that’s useful to a stadium or resort is different than what makes sense for a mall store.

Since I’m not going to cover every application of customer journey tracking outside retail in great detail, I’ll start with some general principles of location measurement based upon industry neutral things like the size of the space and the extent to which the visitors will opt-in to wifi or use an app.

Measuring BIG Spaces versus little ones

With in-store journey tracking, you have three or four alternatives when choosing the underlying measurement collection technology. Cameras, passive wifi, opt-in wifi and bluetooth, and dedicated sniffers are all plausible solutions. With large spaces like stadiums and airports, it’s often too expensive to provide comprehensive camera coverage. It can even be too expensive to deploy custom measurement devices (like sniffers). That’s especially true in environments where the downtime and wiring costs can greatly exceed the cost of the hardware itself.

So for large spaces, wifi tracking often becomes the only realistic technology for deploying a measurement system. That’s not all bad. While out-of-the-box wifi is the least accurate measurement technology, most large spaces don’t demand fine-grained resolution. In a store, a 3 meter circle of error might place a customer in a completely different section of the store. In an airport, it’s hard to imagine it would make much difference.

Key Considerations Driven by Size of Location:

  • How much measurement accuracy to do you need?
  • How expensive will measurement specific equipment and installation be and is it worth the cost?
  • Are there special privacy considerations for your space or audience?

Opt-in vs. Anonymous Tracking

Cameras, passive wifi and sniffers can all deliver anonymous tracking. Wifi, Bluetooth and mobile apps all provide the potential for opt-in tracking. There are significant advantages to opt-in based tracking. First, it’s more accurate. Particularly in out-of-the-box passive wifi, the changes in IoS to randomize MAC addresses have crippled straightforward measurement and made reasonably accurate customer measurement a challenge. When a user connects to your wifi or opens an app, you can locate them more frequently and more precisely and their phone identity is STABLE so you can track them over time. If your primary interest is in understanding specific customers better for your CRM, tracking over-time populations or you have significant issues with the privacy implications of anonymized passive tracking, then opt-in tracking is your best bet. However, this choice is dependent on one further fact: the extent to which your customers will opt-in. For stadiums and resorts, log-in rates are quite high. Not so much at retail banks. Which brings us to…

Key Considerations for Opt-In Based Tracking

  • Will a significant segment of your audience opt-in?
  • Are you primarily interested in CRM (where opt-in is critical) or in journey analytics (which can be anonymous)?

How good is the sample?

Some technologies (like camera) provide comprehensive coverage by default. Most other measurement technologies inherently take some sample. Any form of signal detection will start with a sample that includes only people with phones. That isn’t much of a sample limitation though it will exclude most smaller children. Passive methods further restrict the population to people with wifi turned on. Most estimates place the wifi-activated rate at around 80%. That’s a fairly high number and it seems unlikely that this factor introduces significant sample bias. However, when you start factoring in things like Android user or App downloader or wifi user, you’re often introducing significant reductions in sample size AND adding sample biases that may or may not be difficult to control for. App users probably aren’t a  representative sample of, for example, the likelihood of a shopper to convert in a store. But even if they are a small percentage of your total users, they are likely perfectly representative of how long people spend queuing in lines at a resort. One of the poorly understood aspects of measurement science is that the same sample can be horribly biased for some purposes but perfectly useful for others!

Key Considerations for Sampling

  • Does your measurement collection system bias your measurement in important ways?
  • Are people who opt-in a representative sample for your measurement purposes?

The broad characteristics that define what type of measurement system is right for your needs are, of course, determined by what questions you need to answer. I’ll take a close look at some of the business questions for specific applications like sports stadiums next time. In general, though, large facilities by their very nature need less fine-grained measurement than smaller ones. For most applications outside of retail, being able to locate a person within a 3 meter circle is perfectly adequate. And while the specific questions being answered are often quite specific to an application area, there is a broad and important divide between measurement that’s primarily focused on understanding patterns of movement and analysis that’s focused on understanding specific customers. When your most interested in traffic patterns, then samples work very well. Even highly biased samples will often serve. If, on the other hand, you’re looking to use customer journey tracking to understand specific customers or customer segments (like season-ticket holders) better, you should focus on opt-in based techniques. In those situations, identification trumps accuracy.

If you have questions about the right location-based measurement technology solution for your business, drop us a line at info@digitalmortar.com

Next up, I’ll tackle the surprisingly interesting world of stadium/arena measurement.

Customer Strategy for Retail – Using Analytics and Customer Journey Tracking

I’ve detailed five different ways that in-store customer journey tracking drives store improvement: from optimizing store merchandising to improving in-store digital experiences and tuning omni-channel visits. All are important and each can drive measurable ROI. But in-store customer journey also tracking has broad implications at the strategic level of your organization.  Everyone wants to be more customer focused. I hear that all the time. Over and over. I even agree. And if you’re delivering a physical experience to customers without adequate measurement, you’re not just delivering a sub-optimal experience, you’re missing out on an opportunity to drive customer-centric thinking deeper into your enterprise.

In organizations that take customer focus seriously, the key question isn’t what will maximize sales. It’s what does the customer like/want. Getting an organization to think that way isn’t easy and it’s not even always clear that it’s the right thing to do. I’ve seen plenty of cases where operations and sales people just roll their eyes at a customer-centric proposal – sure that the bottom-line impact will be unsustainable. I tend to shy away from absolutes. The world is a complex place and not every problem demands absolute customer focus regardless of cost. But I do know this; unless you take that customer question to heart, your customer journey exercises will fail. You really do have to care about the customer’s experience and you have to get used to thinking about it that way.

Analytics in general and in-store measurement tracking in particular is a powerful tool for driving customer-centricity. Customer experience issues aren’t captured in traditional ERP data. They don’t show up in our BI reports on product sales by SKU. They aren’t illuminated by marketing studies. To bring customer experience into focus in the organization, you need a set of tools that help the organization map, track, and study real customer experiences.

In physical measurement, store tracking systems aren’t the only tool in your customer experience toolkit (just as digital analytics tools aren’t the only tools in the digital world). Voice of Customer data, in particular, is a critical part of building customer-centric thinking and fueling both strategy and continuous improvement. For years now I’ve championed the integration of VoC data with behavioral data so that decision-makers can see and balance the trade-offs between hard goals (sales optimization) and soft goals (experience, branding, satisfaction). That’s every bit as true in physical retail as it is in eCommerce with the additional requirement that Voice of Employee becomes almost equally important.

You can’t craft and hone an effective customer journey strategy on the back of a one-time customer journey mapping consulting engagement. That doesn’t work. Part of real customer-centricity is realizing that the work of understanding and optimizing customer journeys never ends. It’s a continuous process that requires tools and organizational commitment.

But by bringing real-measurement of the in-store customer experience to your enterprise, you drive a whole new set of customer-centric questions and a fundamentally different approach to staying customer-focused into the enterprise. I spent the last few years prior to Digital Mortar helping drive enterprise digital transformation. It’s hard. But customer measurement is both a hammer and wedge into the organization; it’s one of the most effective tools around to drive organizational transformation.

Use it.

Questions you can Answer

  • What types of customer shopping experiences are there in the store?
  • How do those experiences change in nature or distribution by store type and region?
  • How do my traditional customer segments map to in-store behaviors?
  • How do loyal customer visits in-store differ from casual or non-loyal visits?
  • Are there customers who aren’t well served by the store layout?
  • Are we finding the right type of sales associate and is there incentive structure encouraging both sales and customer satisfaction?
  • Have we setup the store and store operations to minimize customer frustration?

To find out how Digital Mortar can help you improve your in-store experiences and drive transformation, drop us a line.

Omni-channel Analytics and In-store Customer Tracking

While digital experiences are just beginning to penetrate the physical store, the customer’s integration of digital and physical shopping behaviors is already robust. If you have bricks & mortar, you have to figure out how to use that fact to your advantage in delivering experience. That’s what omni-channel is all about. There have been a number of omni-channel retail initiatives in the past couple of years that were undeniably successful. Online to in-store pickup, flexible return, and store localized supply chains have become key ingredients to omni-channel success. But there’s a long way to go before those experiences are mature and optimized.

Not surprisingly, retailers have discovered (sometimes to their chagrin), that omni-channel initiatives have a real downside when it comes to store operations. If you’re staff is spending more time processing online returns, what happens to customer service and sales?

It’s all too easy to steal from Peter to pay Paul. You may be delivering great service to one customer while you’re simultaneously ignoring another. And the two facts may be deeply related. Unless you can measure what’s actually happening in store, you’ll consistently miss these types of interactions.

With in-store tracking technology, you can explore how those omni-channel initiatives are actually impacting store operations AND customer experience. You can track what customers do after a return or before a pickup. You can track the over-time behavior of omni-channel customers to understand the impact on loyalty. You can measure whether sales interactions increase, decrease and are changed by omni-channel duties. And there are at least a couple strategies for beginning to join the in-store customer experience to the digital world. That join is hard, but it allows you do better analysis of almost every aspect of your business. Even better, it opens up a world of new marketing opportunities.

If there’s any area of online display advertising that works, it’s re-marketing. With the store to digital join, you have the opportunity to do digital re-marketing based on in-store behavior. That’s taking show-rooming to a new (and better) level!

If you’re looking for a deep-dive into the single hottest area in modern retail and in-store customer analytics, check out this video introduction I put together. It provides a crisp, easy introduction to the ins-and-outs of omni-channel analytics with in-store customer data including the all-important digital to store join.

Questions you can Answer

  • How much do omni-channel initiatives impact store operations and sales interactions?
  • Are omni-channel tasks being handled by the right staff?
  • Are omni-channel customers significantly different in their store behaviors?
  • What are the best cross-sell and personalization opportunities around omni-channel visits?
  • How much can a digitally sourced visit be steered to traditional shopping without damaging the experience?
  • How omni-channel initiatives change the way the store layout functions and are their opportunities to advantage some kinds of promotions or products as a result?

Getting the Digital In-Store Experience Right

In creating Digital Mortar, we’ve made a huge leap from measuring and optimizing digital experiences to trying to do the same for store experiences. But we haven’t left digital entirely behind. It’s a huge part of Omni-Channel (of course), and you can hear more about that in this distilled down video. But it’s also, increasingly, a part of the store experience. And when digital experiences have made the leap from the web to the store, measurement has generally been left behind. That’s unacceptable.

Optimizing In-Store Digital Experiences

Digital is pervasive in our lives now and the in-store experience is increasingly digital. Integrated mobile apps, geo-fenced couponing, endless aisle digital supplementation, digital signage and integrated digital/product experiences have all gotten real interest and investment as retailers try to figure out the best ways to bring digital experience into the store. A lot – and I mean a LOT – of these experiences have failed. That doesn’t mean they’re bad ideas and it doesn’t mean they can’t succeed. I’ll say it again. Doing new stuff is hard.

But part of the reason the failure rate with these digital experiences is high is methodological. A friend of mine running retail analytics for his company describe it this way: “We spend a ton of money building something. Then we roll out these experiences, nobody measures them, nobody improves them, nobody figures out how they change operations or how operations needs to change. They just sit there. And after a while, they’re just gathering dust.”

I see plenty of in-store digital experiences that are gathering dust. Lumped in deserted areas of the store or with blue-screens of death. And I see plenty of digital signage that might as well be paper signage given how often it’s changed and customized.

If you’re rolling out a digital experience, you need to make sure that good digital measurement is incorporated. That might be a traditional measurement system like Adobe, but there are situations where tools like AppDynamics might be a better bet. Either way, it’s essential to measure the intra-tool experience.

If you’re investing in an in-store digital experience without baking in digital measurement, shame on you. And that measurement shouldn’t be the equivalent of so much App measurement (how often it’s opened). For hands-on digital experiences in the store, measuring success demands thoughtful and quite detailed data collection and analysis.

But what about the experience around the tool? How many customers might have engaged with it but didn’t. Of the customers who did, did it change the way they interacted with the store? Was it a draw or was it an impulse experience? Did using the experience increase total time in the store or did it cannibalize traditional browsing? Did users interact more or less with Staff? And was that a good thing?

If you can’t answer these types of questions when you deploy ANY type of digital experience in store, you can’t optimize the experience and you can’t really tell whether it’s working. That’s a prescription for failure.

Of course not all these types of digital experience use similar measurement techniques, Digital signage, for example, is a little bit different than hands-on digital experiences. Since digital signage has no interactions, traditional measurement techniques are worthless. You can’t put Adobe tags in digital signage (well, you can, it just isn’t useful in the traditional way). But you can still integrate the signage data into broader in-store customer journey tracking – in fact that’s really the only way to create a meaningful measurement context around the signage data and the only way to build a program of continuous improvement. Digital signage is sadly underutilized, under-localized, and under-optimized. All because it can’t really be measured.

Going digital in the store is part of the future retail has to embrace. Getting it right? That’s a job for analytics and in-store customer journey tracking.

Questions you can Answer

  • Are experiences used by a significant percentage of customers?
  • Are there some shopper types more or less likely to engage with a digital experience?
  • Are digital experiences additive to store engagement?
  • Do digital experiences increase or decrease staff interaction with customers?
  • Do digital experiences increase consideration time in a section?
  • Do digital experiences increase or decrease subsequent product consideration?
  • Are digital experiences a draw or an impulse?

The Strategic Uses of In-Store Customer Journey Measurement

Store layout, promotion and staff optimization are the immediate and obvious ways to use the core data from customer journey analytics. Together, they comprise the “you” part of the equation – optimizing your operational and marketing strategies. But the uses of in-store tracking don’t end there. There’s tremendous strategic value in being to understand customer journeys – a lesson we’ve learned over and over again in digital. When it comes to omni-channel, store and experience design, and the integration of new technologies to the store, you simply can’t do the job right without in-store journey measurement.

I cover the fundamentals of why the in-store journey matters and how to build in-store customer journey data in this new post on Digital Mortar.