Tag Archives: in-store tracking

Bringing Real-time Analytics to the Store

When we released the first full production version of DM1 in May, it was a transformational leap in customer location analytics. Now, six months later, we’re releasing the first major upgrade to DM1 – and it’s a doozy. We’re adding powerful new approaches to improving the store and driving actionable results while putting the competition even further in the rear-view mirror (they’re back there somewhere). Some of the coolest new features include:

Real-time View:  See and track what’s happening in the store as it happens

Real-time Messaging: Integrate with Associate and Shopper Mobile devices based on what’s happening right now

Playback: See what happened in the store using a time-lapse simulation of actual shopper behavior

Week-Time: A cool new visualization that shows a Day-Time part analysis for ANY metric or segment

Flexible Cloud Hosting: Azure or Google Cloud, your choice.

And that’s just the big stuff. There have been a host of small tweaks, fixes, performance enhancements and visual improvements in the intervening months.

That initial version of DM1 had a pretty remarkable feature set for a V1 product in a brand new market. It delivered a revolutionary store visualization tool that mapped its powerful metrics into the store at any level of abstraction – from Display to Section to Department to Floor to Store. And the metric set if provided shattered existing door-counting paradigms by delivering real journey metrics. What shoppers did first. Where they spent the most time. Every place they shopped. What got the most consideration. What converted. What didn’t. And DM1 V1 integrated a rich set of Associate tracking metrics into the basic product as well. Associate presence, intra-day STARs, interaction rates and times, and associated lift. DM1 also delivered powerful grid-based reporting and charting, a really cool funnel analytics tool and a powerful side-by-side comparison tool.

With the new features, we’ve focused on adding a set of capabilities that extend DM1 deeper into the store and make it easier to integrate into broader store marketing and operations efforts. The biggest part of that is, of course, real-time.

We’ve always collected store data in real-time – and all of our collection technologies support near real-time data about the shopper. But in the V1 release, everything we did was batch processing and next-day analytics. That isn’t just because batch processing is easier (though that did matter to us). It was also because many years of experience in digital analytics convinced us that the applications for real-time analytics were fairly rare. There was a time when real-time reporting was a huge part of the digital analytics sales process. But in the end, the dominant tools in digital analytics deliver intra-day but far from real-time analytics. So we figured if a very mature market like digital analytics could do without real-time, we didn’t need it for our V1 release.

But the store is different beast than a Website, and we’re finding that having a real-time view of what’s happening makes it possible to add value at the Store Manager level AND support both CRM and queue management applications that help improve the customer experience.

So real-time became a central piece of our V2 release. And once we built out the core capability, we took advantage of it in multiple ways.

The Realtime view show’s what’s happening right now in the store. Associates and Shoppers are shown (using different symbols) and you can quite literally track exactly where they are and where they are going. We even color-code Shoppers to make it easy to identify how long they’ve been in the store.

Check it out:

realtime, location analytics, store analytics, store traffic, DM1, Digital Mortar

Pretty cool. The Playback capability provides the same view but processes historical data. Since it’s historical, it can collapse time periods into a time-lapse view. So you can see an hour or a day in five minutes.

Being able to see real-time data is cool and highly useful for folks on the ground, but I won’t claim the analytic implications are enormous. What is enormous, though, is the capability to tie DM1’s tracking and measurement into real-time messaging systems. We’ve built a straightforward Webhook messaging interface that lets you get three kinds of data out of DM1: current metric data (for uses like queue length), real-time shopper data, and real-time Associate data.

The real-time shopper data can be based off any customer key we have. And it provides a CRM view that includes Entry Time, Total-Time in Store, Presence and Lingers by Section, Current Location, Time since Interaction, and Associate ID of last interaction. You can use this data to generate real-time messages via your mobile application or in-store beacons to the shopper.

As cool as this shopper interface is, I’ve long been a believer that messaging Associates is even more fundamental and important. With shoppers, opt-in is always a challenge. And barring a truly compelling application, I think it’s tough to get enough opt-ins for messaging to make it impactful. But Associates are increasingly being armed with digital tools that allow them to do more (like distributed PoS) and serve the customer better. Being able to optimize Associate interactions with real-time data and positioning is a huge leap forward in operational sophistication.

In addition to real-time, we’ve made a boatload of analytic enhancements too. And one of my favorite new views is the WeekTime report. We’d already build a custom report around staffing that laid out STARs (Shopper to Associate Ratio) by day of week and time of day (down to the hour). But that report wasn’t a thing of beauty and, in any case, it was specific to the STARs metric.

Because Day-time parting is so fundamental to the store, we wanted a generalized analytics tool that would do the job. The WeekTime tool lays out any metric by day-of-week and time-of-day.

Here are some examples of the WeekTime tool. The first view shows when the store had the most shoppers. The second view shows when shoppers spent the most time in the store.

Shopper Traffic by Day-TimeAvg. Shop Time by Day-Time
Day-Time Traffic View for DM1 retail analyticsDM1 Avg. Time by Shopper for Store Analytics

And like all DM1 workbench tools, the Weektime tools is driven by our big data event-level engine so it supports integrated segmentation across any time-period. It’s a really nice analytic addition to the Workbench and the Dashboard view. It makes it much easier to quickly visualize and understand how day-time parts are driving performance on any measurement.

One of the biggest changes we made in V2 isn’t functional but environmental. We built DM1 on Azure and it’s been a great platform. But we’ve seen that our clients are going in all sorts of directions in an incredibly competitive cloud marketplace. And if the rest of your infrastructure is on Google Cloud (GCP), then it just makes sense that DM1 live there too. So in V2, we offer the choice of cloud provider. We’ve ported the entire platform into GCP and – as a bonus gift to ourselves – made the deployment process a lot more automated and easier for us. Microsoft Azure or Google GCP – it’s now your choice. And it’s just part of making sure DM1 is the most technologically sophisticated AND seamless platform around.

V2 is another big step for us. But we’re just getting started. I keep an ever-growing Trello board of new features and some of the most exciting stuff to come includes a full real-time Store Manager tool, a much more comprehensive and beautiful Associate performance report, a store-change report that automatically shows you the impact of every store change in a period of time, the integration of D3 into our charting capability, a full pathing tool, a robust segmentation builder, and even an initial foray into machine learning.

Can hardly wait!

Taking In-Store Measurement…Out of the Store

In my last few posts, I explained what in-store journey analytics is, described the basics of the technology and the data collection used, and went into some detail about its potential business uses. Throughout, and especially in that last part around business uses, I wrote on the assumption that this type of measurement is all about retail stores. After all, brick & mortar stores are the primary focus of Digital Mortar AND of nearly every company in the space. But here’s the thing, this type of measurement is broadly applicable to a wide variety of applications where customer movement though a physical environment is a part of the experience. Stadiums, malls, resorts, cruise ships, casinos, events, hospitals, retail banks, airports, train stations and even government buildings and public spaces can all benefit from understanding how physical spaces can be optimized to drive better customer or user experiences.

In these next few posts, I’m going to step outside the realm of stores and talk about the opportunities in the broader world for customer journey tracking. I’ll start by tackling some of the differences between the tracking technologies and measurement that might be appropriate in some of these areas versus retail, and then I’m going to describe specific application areas and delve a little deeper into how the technology might be used differently than in traditional retail. While the underlying measurement technology can be very similar, the type of reporting and analytics that’s useful to a stadium or resort is different than what makes sense for a mall store.

Since I’m not going to cover every application of customer journey tracking outside retail in great detail, I’ll start with some general principles of location measurement based upon industry neutral things like the size of the space and the extent to which the visitors will opt-in to wifi or use an app.

Measuring BIG Spaces versus little ones

With in-store journey tracking, you have three or four alternatives when choosing the underlying measurement collection technology. Cameras, passive wifi, opt-in wifi and bluetooth, and dedicated sniffers are all plausible solutions. With large spaces like stadiums and airports, it’s often too expensive to provide comprehensive camera coverage. It can even be too expensive to deploy custom measurement devices (like sniffers). That’s especially true in environments where the downtime and wiring costs can greatly exceed the cost of the hardware itself.

So for large spaces, wifi tracking often becomes the only realistic technology for deploying a measurement system. That’s not all bad. While out-of-the-box wifi is the least accurate measurement technology, most large spaces don’t demand fine-grained resolution. In a store, a 3 meter circle of error might place a customer in a completely different section of the store. In an airport, it’s hard to imagine it would make much difference.

Key Considerations Driven by Size of Location:

  • How much measurement accuracy to do you need?
  • How expensive will measurement specific equipment and installation be and is it worth the cost?
  • Are there special privacy considerations for your space or audience?

Opt-in vs. Anonymous Tracking

Cameras, passive wifi and sniffers can all deliver anonymous tracking. Wifi, Bluetooth and mobile apps all provide the potential for opt-in tracking. There are significant advantages to opt-in based tracking. First, it’s more accurate. Particularly in out-of-the-box passive wifi, the changes in IoS to randomize MAC addresses have crippled straightforward measurement and made reasonably accurate customer measurement a challenge. When a user connects to your wifi or opens an app, you can locate them more frequently and more precisely and their phone identity is STABLE so you can track them over time. If your primary interest is in understanding specific customers better for your CRM, tracking over-time populations or you have significant issues with the privacy implications of anonymized passive tracking, then opt-in tracking is your best bet. However, this choice is dependent on one further fact: the extent to which your customers will opt-in. For stadiums and resorts, log-in rates are quite high. Not so much at retail banks. Which brings us to…

Key Considerations for Opt-In Based Tracking

  • Will a significant segment of your audience opt-in?
  • Are you primarily interested in CRM (where opt-in is critical) or in journey analytics (which can be anonymous)?

How good is the sample?

Some technologies (like camera) provide comprehensive coverage by default. Most other measurement technologies inherently take some sample. Any form of signal detection will start with a sample that includes only people with phones. That isn’t much of a sample limitation though it will exclude most smaller children. Passive methods further restrict the population to people with wifi turned on. Most estimates place the wifi-activated rate at around 80%. That’s a fairly high number and it seems unlikely that this factor introduces significant sample bias. However, when you start factoring in things like Android user or App downloader or wifi user, you’re often introducing significant reductions in sample size AND adding sample biases that may or may not be difficult to control for. App users probably aren’t a  representative sample of, for example, the likelihood of a shopper to convert in a store. But even if they are a small percentage of your total users, they are likely perfectly representative of how long people spend queuing in lines at a resort. One of the poorly understood aspects of measurement science is that the same sample can be horribly biased for some purposes but perfectly useful for others!

Key Considerations for Sampling

  • Does your measurement collection system bias your measurement in important ways?
  • Are people who opt-in a representative sample for your measurement purposes?

The broad characteristics that define what type of measurement system is right for your needs are, of course, determined by what questions you need to answer. I’ll take a close look at some of the business questions for specific applications like sports stadiums next time. In general, though, large facilities by their very nature need less fine-grained measurement than smaller ones. For most applications outside of retail, being able to locate a person within a 3 meter circle is perfectly adequate. And while the specific questions being answered are often quite specific to an application area, there is a broad and important divide between measurement that’s primarily focused on understanding patterns of movement and analysis that’s focused on understanding specific customers. When your most interested in traffic patterns, then samples work very well. Even highly biased samples will often serve. If, on the other hand, you’re looking to use customer journey tracking to understand specific customers or customer segments (like season-ticket holders) better, you should focus on opt-in based techniques. In those situations, identification trumps accuracy.

If you have questions about the right location-based measurement technology solution for your business, drop us a line at info@digitalmortar.com

Next up, I’ll tackle the surprisingly interesting world of stadium/arena measurement.