Tag Archives: in-store analytics

Mobile Apps, Geo-Location and Shopper Analytics

The hardest part about doing enterprise shopper journey measurement and analytics is data collection. Putting new hardware in the store is no joke – and yet it’s often necessary to get the measurement you want. Still, often isn’t the same as always. Last week I talked about how you can get surprisingly powerful store measurement by taking data from your existing store WiFi and flowing it into our DM1 platform. Store Wifi gives you broad population coverage (no, shoppers don’t have to connect) but it isn’t very accurate positionally. On the other end of the measurement spectrum is geo-locating your mobile app users. It’s another way – and a good one – to get fascinating measurement about how shoppers navigate your store.

 

Geo-locating your mobile app users is easy and quite inexpensive. It can be done with no additional hardware in the store. It’s very accurate and, by feeding the data to DM1, you can get powerful and detailed analytics on what your mobile app users are doing in-store. When you add geo-location to your Mobile App (it just takes a few lines of code), it sends you a stream of positional data that tells you exactly where a shopper was throughout their in-store journey. Our DM1 platform ingests that stream, aggregates it, and provides you the store analytics to understand paths, funnels, usage, interactions, and much more.

That’s why, when I speak on geo-location analytics, I steal the line from Lenox Financial and describe mobile app geo-location as the biggest no brainer in the history of earth.

 

There’s only one real drawback to shopper measurement via mobile app and it’s the obvious one – it’s limited to the population of your mobile app users. For most retailers, that’s a small and totally non-random segment of their population.

 

Before I discuss the implications of that, here’s what you need to know about getting this kind of app-tracking to work and integrating it with Digital Mortar’s platform.

 

We’re all mobile phone users and we all know that our phones position us. Most of us could barely navigate our home city without Google or Waze or Apple Maps. I remember being in Venice and wondering how ANYONE ever got around there before GPS. It’s like the old D&D game – a maze of twisty passages, all alike. I imagine people just got lost a lot and that was probably part of the fun.

 

We also know that the built-in outdoor GPS positioning on the phone is pretty accurate but not super-precise. When you use it for walking you can often see just how dislocated that little blue-dot is from where your actually standing. And it can take some real mental work to figure out exactly where you are and when to turn if – as in places like Venice – you’re not navigating long straight blocks.

 

Indoor wayfinding has its own set of challenges. Indoor spaces by their very nature are more tightly packed so there’s a higher premium on positional accuracy. But indoor spaces are also more challenging from a measurement standpoint because signals are routinely blocked, distorted or mirrored. And, of course, indoor space are often importantly three dimensional. Outdoor mapping doesn’t have to worry about floors – but in buildings, knowing what floor you’re on is fundamental.

 

Fortunately, your typical smart phone these days has a whole grab bag of sensors that can be used for better indoor wayfinding. Good indoor wayfinding systems take advantage of the whole array of phone sensors – starting with GPS positioning but adding WiFi, BlueTooth signals, radio signals, magnetic fields, the inertial sensor platform and even barometric pressure.

 

This works pretty well since most environments these days are signal rich. It’s also very easy to improve the performance of indoor way-finding if you find that there are inside areas where positional accuracy isn’t great. In most cases, dropping a beacon or two will solve the problem.

 

Typically, indoor wayfinding systems work as code libraries. You put their code into your mobile app and make a few simple function calls. From a developer perspective, this type of integration is simple and straightforward. What’s more, unlike say digital analytics tagging where you need to tie measurement messaging tightly to the functionality, the geo-location libraries (at least when used for measurement) function almost as a stand-alone element of your App. So it’s trivial for developers to integrate the code – and it requires minimal design cycles. Compared to adding good digital analytics tagging to your App, it’s a breeze.

 

With a 3rd Party library in your App, there’s only two other things you need to do. The first is to fingerprint your location – this is essentially a calibration and mapping step where you translate the signals into site location. It’s not hard, but if you really want a turnkey setup, Digital Mortar can do this for you – it takes less than a day and involves no disruption of the site. It doesn’t even have to be done after hours.

 

The last step is to provision a feed from the 3rd Party Cloud instance (or your own cloud instance if you’re using a non-turnkey library that just sources the data to your servers) to our DM1 platform. Most providers provide a good, event-level feed as part of their core service. So all you have to do is turn it on. It’s not that much harder in the DIY world.

 

Keep in mind that most geo-location service providers are thinking about messaging, indoor way-finding and other interactive uses for their service – not analytics. So the analytics you’ll get out of the box is mostly non-existent or even less compelling that what you’d get from a WiFi vendor (and, as I mentioned last week, that aint great).

 

That’s what DM1 is for. Because there is no better source of data for our platform. The beauty of fully-configured mobile app services is that the positional accuracy is terrific. The event stream can be generated at a pre-determined frequency – so we’re not dependent on the somewhat random ping rates that come with other forms of electronic tracking. That means we can capture a full, accurate, and very detailed customer journey.

 

Even better, the nature of mobile apps is that they can provide a true omni-channel join. So you can take DM1’s CRM-based feed and integrate with your customer digital behavior to create a full journey customer database. Our CRM feed includes the customer id you pass us (usually a hashed identifier), basic visit information (visit time, length, and flags for purchase and interaction), and the time spent in each area of the store. Adding that to your customer record is powerful. And yes, it’s just for your mobile app users. But often, those are your very best customers.

 

Plus, there are important applications where the biases inherent in a mobile app sample aren’t particularly damaging. If, for example, you want to know how long customers are queuing at cash-wrap it’s perfectly possible to use mobile app data. When they are standing in line, they are there for the same amount of time as everyone else. And how mobile app users shop the store and take advantage of omni-channel experiences is, let’s just say, quite interesting and valuable.

That being said, it’s like any other case where you’re working with a non-random sample. You can’t assume that all your shoppers behave the way your mobile population does – and if you try to make those kinds of extrapolations, you’re going to get it wrong.

 

That’s why, though a mobile app feed might be the primary customer source you feed into DM1, it’s more likely that you’ll combine a mobile app feed with a full customer feed from iViu, WiFi or camera.

In-store shopper measurement technology compared reviews

In DM1, we keep each feed as a separate segment. With a little bit of a code tweak to your mobile app, we can also integrate your mobile app data directly with the iViu feed so there’s no double counting. But most times, you’ll work with them as separate populations.

 

Either way, you get the full power of DM1’s analytics on the mobile app shopper data. Pathing, funnels, store layout, segmentation, etc. etc.:

Digital Mortars DM1 - Shopper measurement and geo-location analytics. Path Analytics, Funnel Analysis

Finally, this is also one of the best ways to collect and integrate Associate tracking. DM1 provides full Associate measurement functionality allowing you to understand when and where you’re under or over staffed in the store. Adding geo-location to your associate devices is just as easy as it is on the shopper side – and this is something you can do even if you’re not heavily invested in customer-facing mobile apps.

 

 

So if you’re suitably excited, the next question ought to be – where do you get this and how much does it cost?

 

There are tons of options for adding geo-location measurement to your app. The easiest and most fully-baked come from providers like IndoorAtlas and Radar. Hey, even my old digital analytics friends at Adobe and Google do this. The most full-service systems include the code libraries, platforms for fingerprinting, and robust cloud feeds. They make going from App setup to DM1 analytics a walk in the park. There are plenty of DIY alternatives as well – many open-sourced and free.

 

The full-service platform vendors typically charge you per location based on broad square footage ranges. It’s quite inexpensive – though the out-of-the-box pricing models tend to work better for single, very large locations than for large numbers of mid-sized stores. Most of these companies seem to engage in enterprise pricing – meaning that the price you pay is largely a function of whatever you can negotiate. And if you’d prefer, we can provide developer support integrating an open-source solution into your App. It probably won’t be quite as robust, but if your primary goal is measurement it will more than get the job done.

 

From the standpoint of integrating with DM1, it’s pretty much out of the box. If we don’t support the feed already, we’ll create the integration as part of getting you setup – no charge. It’s not too hard because the data streams are pretty much identical – identifier, timestamp, x, y coordinates. There really isn’t much else to it.

 

The measurement costs are trivial compared to what you spend on App development and small compared to what you spend on digital analytics app measurement and analysis. The data is extremely robust and – in a field plagued by bad data – quite accurate. The omni-channel join possibilities are like adding hot fudge sauce to an already delicious sundae. Paired with DM1, you can measure and optimize exactly how this critical and growing customer segment uses the store. You can study how digital and store behaviors interact. And you have an excellent data source for overall store navigation and store usage that you can pair with other data sources or use as is.

 

Okay…it may not be the biggest no-brainer in the history of earth. But adding geo-location and DM1 analytics to your mobile app is definitely the biggest no-brainer in shopper measurement.

A Year in Store Analytics

It’s been a little more than a year now for me in store analytics and with the time right after Christmas and the chance to see the industry’s latest at NRF 2018, it seems like a good time to reflect on what I’ve learned and where I think things are headed.

Let’s start with the big broad view…

The Current State of Stores

Given the retail apocalypse meme, it’s obvious that 2017 was a very tough year. But the sheer number of store closings masked other statistics – including fairly robust in-store spending growth – that tell a different story. There’s no doubt that stores saddled with a lot of bad real-estate and muddied brands got pounded in 2017. I’ve written before that one of the unique economic aspects of online from a marketplace standpoint is the absence of friction. That lack of friction makes it possible for one player (you know who) to dominate in a way that could never have happened in physical retail. At the same time, digital has greatly reduced overall retail friction. And that reduction means that shoppers are not inclined to shop at bad stores just to achieve geographic convenience. So the unsatisfying end of the store market is getting absolutely crushed – and frankly – nothing is going to save it. Digital has created a world that is very unforgiving to bad experience.

On the other hand, if you can exceed that threshold, it seems pretty clear that there is a legitimate and very significant role for physical stores. And then the key question becomes, can you use analytics to make stores an asset.

So let’s talk about…

The Current State of In-Store Customer Analytics

It’s pretty rough out there. A lot of companies have experimented with in-store shopper measurement using a variety of technologies. Mostly, those efforts haven’t been successful and I think there are two reasons for that. First, this type of store analytics is new and most of the stores trying it don’t have dedicated analytics teams who can use the data. IT led projects are great for getting the infrastructure in the store, but without dedicated analytics the business value isn’t going to materialize. I saw that same pattern for years in web analytics before the digital analytics function was standardized and (nearly always) located on the business side. Second, the products most stores are using just suck. I really do feel for any analyst trying to use the deeply flawed, highly aggregated data that gets produced and presented by most of the “solutions” out there. They don’t give analysts enough access to the data to be able to clean it, and they don’t to a very good job cleaning it themselves. And even when the data is acceptable, the depth of reporting and analytics isn’t.

So when I talk to company’s that have invested in existing non Digital Mortar store analytics solutions, what I mostly hear is a litany of complaints and failure. We tried it, but it was too expensive. We didn’t see the value. It didn’t work very well.

I get it. The bottom line is that for analytics to be useful, the data has to be reasonably accurate, the analytics platform has to provide reasonable access to the data and you must have resources who can use it. Oh – and you have to be willing to make changes and actually use the data.

There’s a lot of maturing to do across all of these dimensions. It’s really just this simple. If you are serious about analytics, you have to invest in it. Dollars and organizational capital. Dollars to put the right technology in place and get the people to run it. Organizational capital to push people into actually using data to drive decisions and aggressively test.

Which brings me to….

What to invest in

Our DM1 platform obviously. But that’s just one part of bigger set of analytics decisions. I wrote pretty deeply before the holidays on the various data collection technologies in play. Based on what I saw at NRF, not that much has changed. I did see some improvement in the camera side of the house. Time of Flight cameras are  interesting and there are at least a couple of camera systems now that are beginning to do the all-important work of shopper stitching across zones. For small footprint stores there are some viable options in the camera world worth considering. I even saw a couple of face recognition systems that might make point-to-point implementations for analytics practical. Those systems are mostly focused on security though – and integration with analytics is going to be work.

I haven’t written much about mobile measurement, but geo-location within mobile apps is – to quote the Lenox mortgage guy – the biggest no-brainer in the history of earth. It’s not a complete sample. It’s not even a good sample. But it’s ridiculously easy to drop code into your mobile app to geo-locate within the store. And we can take that tracking data and run it into DM1 – giving you detailed, powerful analytics on one of the most important shopper segments you have. It costs very little. There’s no store side infrastructure or physical implementation – and the data is accurate, omni-joinable and super powerful. Small segment nirvana.

The overall data collection technology decision isn’t simple or straightforward for anyone. We’ve actually been working with Capgemini to integrate multiple technologies into their Innovation Center so that we can run workshops to help companies get a hands-on feel for each and – I hope – help folks make the right decision for their stores.

People is the biggest thing. People is the most expensive thing. People is the most important thing. It doesn’t matter how much analytic technology you bring to the table – people are the key to making it work. The vast majority of stores just don’t have store-side teams that understand behavioral data. You can try to create that or you can expand the brief of your digital or omni-channel teams and re-christen them behavioral analytics teams. I like option number two. Why not take advantage of the analytics smarts you actually have? The data, as I’ve said many times before, is eerily similar. We’ve been working hard to beef up partnerships and our own professional services to help too. But while you can use consultants to get a serious analytic effort off the ground, over time you need to own it. And that means deciding where it lives in your organization and how it fits in.

Which I know sounds a lot like…

Everything old is new again

I make no bones about the fact that I dived into store measurement because I thought the lessons of digital analytics mostly applied. In the year sense, I’ve found that to be truer than I knew and maybe even truer than I’d like. Many of the challenges I see in store analytics are the ones we spent more than decade in digital analytics gradually solving. Bad data quality and insufficient attention to making it right. IT organizations focused on collection not use. A focus on site/store measurements instead of shopper measurement.

Some of the problems are common to any analytic effort of any sort. An over-willingness to invest in technology not people (yeah – I know – I’m a technology vendor now I shouldn’t be saying this!). A lack of willingness to change operational patterns to be driven by analytics and measurement and a corresponding challenge actually using analytics. Far too many people willing to talk the talk but unable or unwilling to walk the walk necessary to do analytics and to use it. These are hard problems and it’s only select companies that will ever solve them.

Through it all I see no reason to change the core beliefs that drove me to start Digital Mortar. Shopper analytics is critical to doing retail well. In a time of disruption and innovation, it can drive massive competitive advantage if an organization is willing to embrace it seriously. But that’s not easy. It takes organizational commitment, some guts, good tools and real smarts.

Digital Mortar can provide a genuinely good tool. We can help with the smarts. Guts and commitment? That’s up to you!

In-Store Customer Journey Tracking: Can You Really Do This?

When I describe my new company Digital Mortar to folks, the most common reaction I get is: “Can you really do this?”

Depending on their level of experience in the field, that question has one of two meetings. If they haven’t used existing in-store customer tracking solutions, the question generally means: is the technology practical and is it actually OK to use it (i.e. does it violate privacy policies)? If they have experience with existing in-store customer tracking solutions what they mean is: “does your stuff actually work as opposed to the garbage I’ve been using?”

I’m going to tackle the first question today (is the technology practical and legal) and leave the second for next time.

Is the Technology Practical?

Yes. As my post last week made clear, the various technologies for in-store customer tracking have challenges. Data quality is a real problem. There are issues with positional accuracy, visitorization, journey tracking, and even basic reliability. This is still cutting or even bleeding-edge technology. It’s like digital analytics circa 2005 not digital analytics 2017. But the technologies work. They can be deployed at scale and for a reasonable cost. The data they provide needs careful cleaning and processing. But so does almost any data set. If chosen appropriately and implemented well, the technologies provide data that is immediately valuable and can drive true continuous improvement in stores.

How Hard is it to Deploy In-Store Tracking?

Unfortunately, the in-store customer tracking technologies that don’t take at least some physical in-store installation (Wi-Fi Access Point based measurement and piggybacking off of existing security cameras) are also the least useful. Wi-Fi measurement is practical for arenas, airports, malls and other very large spaces with good Wi-Fi opt-in rates. For stores, it just doesn’t work well enough to support serious measurement. Security cameras can give you inaccurate, zone based counts and not much else.  Good in-store measurement will require you install either measurement focused cameras or passive sniffers. Of the two, sniffers are lot easier. You need a lot less of them. The placement is easier. The power and cabling requirements are lower. And they are quite a bit cheaper.

Either way, you should expect that it will take a few weeks to plan out the deployment for a new store layout. This will also involve coordination with your installation partner. Typically, the installation is done over one or two evenings. No special closing is required. With sniffers, the impact on the store environment is minimal. The devices are about the size of a deck of playing cards, can be painted to match the environment and any necessary wiring is usually hidden.

After a couple week shake down, you’ll have useable measurement and a plan you can roll out to other stores. Subsequent stores with the same or similar layout can be done as quickly as your installation partner will schedule them. And the post-install shake-down period is less.

So if you’re planning a Pilot project, here’s the timeline we use at Digital Mortar:

Month 1

  • Select Store Targets: We typically recommend 3 stores in a Pilot – one test and two control stores with similar layout and market.
  • Select Initial Store
  • Design Implementation for the Initial Store
  • Train Installation Partner
  • Do initial 1 store installation

Month 2

  • Test the initial installation and tune plan if necessary
  • Rollout to additional stores
  • Provide initial reporting
  • Targeted analysis to develop store testing plan

Month 3

  • Run initial test(s)
  • Analyze control vs. test
  • Assess findings and make optimization recommendations
  • Evaluate pilot program

This kind of Pilot timeline gets you live, production data early in Month 2 with initial store findings not long after. And it gets you real experience with the type of analysis, testing and continuous improvement cycle that make for effective business use.

Is it Ok to Use Location Analytics?

Yes. In-store tracking technology is already widely used. The majority of major retailers have tried it in various forms. There is an established community of interest focused on privacy and compliance in location analytics (the Future of Privacy Forum) that is supported by the major technology players (including giants like Cisco who do this routinely), major retailers, most of the vendors specific to the space, and plenty of heavy-hitters from a political standpoint. They’ve published guidelines (with input from the FTC) on how to do this. In many respects, the landscape is similar to digital. To do this right, you must have a documented and published privacy policy and you MUST adhere to your own privacy policy. If you offer an online opt-out, you must provide and honor an online opt-out. If you offer an in-store opt-out, you must provide it. To abide by the privacy standards, you must treat the visitor’s phone MAC address as PII information. You must not keep and match the visitor’s MAC address without opt-in and you should make sure that is hashed or transformed when stored.

And, of course, in the EU the tracking guidelines are significantly more restrictive.

In almost all respects, this is identical to the use of cookies in the digital world. And, as with the digital world, it’s not hard to see where the blurry lines are. Using in-store customer journey tracking to improve the store is non-controversial – the equivalent of using first-party cookies to analyze and improve a website. Using appropriately described opt-ins to track and market to identified customers is fine as long as the usage is appropriately disclosed. Selling customer information begins to touch on gray areas. And identifying and marketing to users without opt-in using any kind of device fingerprinting is very gray indeed.

Bottom line? In-store customer tracking and location analytics is ready for prime-time. The technologies work. They can be deployed reasonably and provide genuinely useful data. Deployment is non-trivial but is far from back-breaking. And the proper uses of the data are understood and widely accepted.

In my next post, I’ll take up the analytic problems that have crippled existing solutions and explain how we’ve solved them.

Getting the Digital In-Store Experience Right

In creating Digital Mortar, we’ve made a huge leap from measuring and optimizing digital experiences to trying to do the same for store experiences. But we haven’t left digital entirely behind. It’s a huge part of Omni-Channel (of course), and you can hear more about that in this distilled down video. But it’s also, increasingly, a part of the store experience. And when digital experiences have made the leap from the web to the store, measurement has generally been left behind. That’s unacceptable.

Optimizing In-Store Digital Experiences

Digital is pervasive in our lives now and the in-store experience is increasingly digital. Integrated mobile apps, geo-fenced couponing, endless aisle digital supplementation, digital signage and integrated digital/product experiences have all gotten real interest and investment as retailers try to figure out the best ways to bring digital experience into the store. A lot – and I mean a LOT – of these experiences have failed. That doesn’t mean they’re bad ideas and it doesn’t mean they can’t succeed. I’ll say it again. Doing new stuff is hard.

But part of the reason the failure rate with these digital experiences is high is methodological. A friend of mine running retail analytics for his company describe it this way: “We spend a ton of money building something. Then we roll out these experiences, nobody measures them, nobody improves them, nobody figures out how they change operations or how operations needs to change. They just sit there. And after a while, they’re just gathering dust.”

I see plenty of in-store digital experiences that are gathering dust. Lumped in deserted areas of the store or with blue-screens of death. And I see plenty of digital signage that might as well be paper signage given how often it’s changed and customized.

If you’re rolling out a digital experience, you need to make sure that good digital measurement is incorporated. That might be a traditional measurement system like Adobe, but there are situations where tools like AppDynamics might be a better bet. Either way, it’s essential to measure the intra-tool experience.

If you’re investing in an in-store digital experience without baking in digital measurement, shame on you. And that measurement shouldn’t be the equivalent of so much App measurement (how often it’s opened). For hands-on digital experiences in the store, measuring success demands thoughtful and quite detailed data collection and analysis.

But what about the experience around the tool? How many customers might have engaged with it but didn’t. Of the customers who did, did it change the way they interacted with the store? Was it a draw or was it an impulse experience? Did using the experience increase total time in the store or did it cannibalize traditional browsing? Did users interact more or less with Staff? And was that a good thing?

If you can’t answer these types of questions when you deploy ANY type of digital experience in store, you can’t optimize the experience and you can’t really tell whether it’s working. That’s a prescription for failure.

Of course not all these types of digital experience use similar measurement techniques, Digital signage, for example, is a little bit different than hands-on digital experiences. Since digital signage has no interactions, traditional measurement techniques are worthless. You can’t put Adobe tags in digital signage (well, you can, it just isn’t useful in the traditional way). But you can still integrate the signage data into broader in-store customer journey tracking – in fact that’s really the only way to create a meaningful measurement context around the signage data and the only way to build a program of continuous improvement. Digital signage is sadly underutilized, under-localized, and under-optimized. All because it can’t really be measured.

Going digital in the store is part of the future retail has to embrace. Getting it right? That’s a job for analytics and in-store customer journey tracking.

Questions you can Answer

  • Are experiences used by a significant percentage of customers?
  • Are there some shopper types more or less likely to engage with a digital experience?
  • Are digital experiences additive to store engagement?
  • Do digital experiences increase or decrease staff interaction with customers?
  • Do digital experiences increase consideration time in a section?
  • Do digital experiences increase or decrease subsequent product consideration?
  • Are digital experiences a draw or an impulse?

What is in-store customer journey data for?

In my last post, I described what in-store customer data is. But the really important question is this – what do you do with it? Not surprisingly, in-store customer movement data serves quite a range of needs that I’ll categorize broadly as store layout optimization, promotion planning and optimization, staff optimization, digital experience integration, omni-channel experience optimization, and customer experience optimization. I’ll talk about each in more detail, but you can think about it this way. Half of the utility of in-store customer journey measurement is focused on you – your store, your promotions and your staff. When you can measure the in-store customer journey better, you can optimize your marketing and operations more effectively. It’s that simple. The other half of the equation is about the customer. Mapping customer segments, finding gaps in the experience, figuring out how omni-channel journeys work. This kind of data may have immediate tactical implications but it’s real function is strategic. When you understand the customer experience better you can design better stores, better marketing campaigns, and better omni-channel strategies.

I’m going to cover each area in a short post, starting with the most basic and straightforward (store layout) and moving up into the increasingly strategic uses.

 

Store Layout and Merchandising Optimization

While bricks&mortar hasn’t had the kind of measurement and continuous improvement systems that drive digital, it has had a long, arduous and fruitful journey to maturity. Store analysts and manager know a lot. And while in-store customer journey measurement can fill in some pretty important gaps, you can do a lot of good store optimization based on a combination of well-understood best practices, basic door-counting, and PoS information. At a high-level, retailers understand how product placement drives sales, what the value of an end-cap/feature is, and how shelf placement matters. With PoS data, they also understand which products tend to be purchased together. So what’s missing? Quite a bit, actually, and some of it is pretty valuable. With customer journey data you can do true funnel analysis – not just at the store level (PoS/Door Counting) but at a detailed level within the store. You’ll see the opportunity each store area had, what customer segments made up that opportunity, and how well the section of the store is engaging customers and converting on the opportunity. Funnel analysis forever changed the way people optimized websites. It can do the same for the store. When you make a change, you can see how patterns of movement, shopping and segmentation all shift. You can isolate specific segments of customer (first time, regular, committed shopper, browser) and see how their product associations and navigation patterns differ. If this sounds like continuous improvement through testing…well, that’s exactly what it is.

Questions you can Answer

  • How well is each area and section of the store performing?
  • How do different customer segments use the store differently?
  • How effective are displays in engaging customers?
  • How did store layout changes impact opportunity and engagement?
  • Are there underutilized areas of the store?
  • Are store experiences capturing engagement and changing shopping patterns?
  • Are there unusual local patterns of engagement at a particular store?

Next up? Optimizing promotions and in-store marketing campaigns.

 

Why do we need to track customers when we know what they buy?

Digital Mortar is committed to bringing a whole new generation of measurement and analytics to the in-store customer journey. What I mean by that “new generation” is that our approach embodies more complete and far more accurate data collection. I mean that it provides far more interesting and directive reports. And I mean that our analytics will make a store (or other physical space) work better. But how does that happen and why do we need to track customers inside the store when we know what they buy? After all, it’s not as if traditional stores are unmeasured. Stores have, at minimum, PoS data and store merchandising and operations data. In other words, we know what we had to sell, we know how many people we used to sell it, and we know how much (and what and what profit) we actually sold.

That stuff is vital and deeply explanatory.

It constitutes the data necessary to optimize assortment, manage (to some extent) staffing needs, allocate staff to areas, and understand which categories are pulling their weight. It can even, with market basket analysis, help us understand which products are associated in customer’s shopping behaviors and can form the basis for layout optimization.

We come from a digital analytics background – analyzing customer experience on eCommerce sites we often had a similar situation. The back-office systems told us which products were purchased, which were bought together, which categories were most successful. You didn’t need a digital analytics solution to tell you any of that. So if you bought, implemented and tried to use a digital analytics solution and those were your questions…well, you were going to be disappointed. Not because a digital analytics solution couldn’t provide answers, it just couldn’t provide better answer than you already had.

It’s the same with in-store tracking systems; which is why when we’re building our system, evaluating reports or doing analysis for clients at Digital Mortar, I find myself using the PoS test. The PoS test is just this pretty simple question: does using the customer in-store journey to answer the question provide better, more useful information than simply knowing what customers bought?

When the answer yes, we build it. But sometimes the answer is no – and we just leave well enough alone.

Let me give you some examples from real-life to show why the PoS test can help clarify what In-Store tracking is for. Here’s three different reports based on understanding the in-store customer journey:

#1: There are regular in-store events hosted by each location. With in-store tracking, we can measure the browsing impact of these events and see if they encourage people to shop products.

#2: There are sometimes significant category performance differences between locations. With in-store tracking, we can measure whether the performance differences are driven by layout, by traffic type, by weather or by area shop per preferences.

#3: Matching staffing levels to store traffic can be tricky. Are there times when a store is understaffed leaving sales, literally, on the table? With in-store tracking we can measure associate / customer rations, interactions and performance and we can identify whether and how often lowered interaction rates lost sales.

I think all three of these reports are potentially interesting – they’re perfectly reasonable to ask for and to produce.

With #1, however, I have to wonder how much value in-store tracking will add beyond PoS data. I can just as easily correlate PoS data to event times to see if events drive additional sales. What I don’t know is whether event attendees browse but don’t buy. If I do this analysis with in-store tracking data, the first question I’ll get is “But did they buy anything?” If, on the other hand, I do the analysis with PoS data, I’m much less likely to hear “But did they browse the store?” So while in-store tracking adds a little bit of information to the problem, it’s probably not the best or the easiest way to understand the impact of store events. We chose not to include this type of report in our base report set, even though we do let people integrate and view this type of data.

Question #2 is quite different. The question starts with sales data. We see differences in category sales by store. So more PoS data isn’t going to help. When you want to know why sales are different (by day, by store, by region, etc.), then you’ll need other types of data. Obviously, you’ll need square footage to understand efficiency, but the type of store layout data you can bring to bear is probably even more critical than measures of efficiency. With in-store tracking you can see how often a category functions as a draw (where customers go first), how it gets traffic from associated areas, how much opportunity it had, and how well it actually performed. Along with weather and associate interaction data, you have almost every factor you’re likely to need to really understand the drivers of performance. We made sure this kind of analytics is easy in our tool. Not just by integrating PoS data, but by making sure that it’s possible to understand and compare how store layouts shape category browsing and buying.

Question #3 is somewhere in between. By matching staffing data to PoS data, I can see if there are times when I look understaffed.  But I’m missing significant pieces of information if I try to optimize staff using only PoS data. Door-counting data can take this one step further and help me understand when interaction opportunities were highest (and most underserved). With full in-store journey tracking, I can refine my answers to individual categories / departments and make sure I’m evaluating real opportunities not, for example, mall pass throughs. So in-store journey tracking deepens and sharpens the answer to Staffing Gaps well beyond what can be achieved with only PoS data or even PoS and door-counting data. Once again, we chose to include staff optimization reports (actually a whole bunch of them) in the base product. Even though you can do interesting analysis with just PoS data, there’s too much missing to make decision-makers informed and confident enough to make changes. And making changes is what it’s all about.

 

We all know the old saying about everything looking like a nail when your only tool is a hammer. But the truth is that we often fixate on a particular tool even when many others are near to hand. You can answer all sorts of questions with in-store journey tracking data, but some of those questions can be answered as well or better using your existing PoS or door-counting data. This sort of analytics duplication isn’t unique to in-store tracking. It’s ubiquitous in data analytics in general. Before you start buying systems, using reports or delving into a tool, it’s almost always worth asking if it’s the right/easiest/best data for the job. It just so happens that with in-store tracking data, asking how and whether it extends PoS data is almost always a good place to start.

In creating the DM tool, we’ve tried to do a lot of that work for you. And by applying the PoS test, we think we’ve created a report set that helps guide you to the best uses of in-store tracking data. The uses that take full advantage of what makes this data unique and that don’t waste your time with stuff you already (should) know.