Tag Archives: enterprise transformation

Digital Transformation in the Enterprise – Creating Continuous Improvement

I’m writing this post as I fly to London for the Digital Analytics Hub. The Hub is in its fourth year now (two in Berlin and two in London) and I’ve managed to make it every time. Of course, doing these Conference/Vacations is a bit of a mixed blessing. I really enjoyed my time in Italy but that was more vacation than Conference. The Hub is more Conference than vacation – it’s filled with Europe’s top analytics practitioners in deep conversation on analytics. In fact, it’s my favorite analytics conference going right now. And here’s the good news, it’s coming to the States in September! So I have one more of these analytics vacations on my calendar and that should be the best one of all. If you’re looking for the ultimate analytics experience – an immersion in deep conversation with the some of the best analytics practitioners around – you should check it out.

I’ve got three topics I’m bringing to the Hub. Machine Learning for digital analytics, digital analytics forecasting and, of course, the topic at hand today, enterprise digital transformation.

In my last post, I described five initiatives that lay the foundation for analytics driven digital transformation. Those projects focus on data collection, journey mapping, behavioral segmentation, enterprise Voice of Customer (VoC) and unified marketing measurement. Together, these five initiatives provide a way to think about digital from a customer perspective. The data piece is focused on making sure that data collection to support personalization and segmentation is in place. The Journey mapping and the behavioral segmentation provide the customer context for every digital touchpoint – why it exists and what it’s supposed to do. The VoC system provides a window into who customers want and need and how they make decisions at every touchpoint. Finally, the marketing framework ensures that digital spend is optimized on an apples-to-apples basis and is focused on the right customers and actions to drive the business.

In a way, these projects are all designed to help the enterprise think and talk intelligently about the digital business. The data collection piece is designed to get organizations thinking about personalization cues in the digital experience. Journey mapping is designed to expand and frame customer experience and place customer thinking at the center of the digital strategy. Two-tiered segmentation serves to get people talking about digital success in terms of customer’s and their intent. Instead of asking questions like whether a Website is successful, it gets people thinking about whether the Website is successful for a certain type of customer with a specific journey intent. That’s a much better way to think. Similarly, the VoC system is all about getting people to focus on customer and to realize that analytics can serve decision-making on an ongoing basis. The marketing framework is all about making sure that campaigns and creative are measured to real business goals – set within the customer journey and the behavioral segmentation.

The foundational elements are also designed to help integrate analytics into different parts of the digital business. The data collection piece is targeted toward direct response optimization. Journey mapping is designed to help weld strategic decisions to line manager responsibilities. Behavioral segmentation is focused on line and product managers needing tactical experience optimization. VoC is targeted toward strategic thinking and decision-making, and, of course, the marketing framework is designed to support the campaign and creative teams.

If a way to think and talk intelligently about the digital enterprise and its operations is the first step, what comes next?

All five of the initiatives that I’ve slated into the next phase are about one thing – creating a discipline of continuous improvement in the enterprise. That discipline can’t be built on top of thin air – it only works if your foundation (data, metrics, framework) supports optimization. Once it does, however, the focus should be on taking advantage of that to create continuous improvement.

The first step is massive experimentation via an analytics driven testing plan. This is partly about doing lots of experiments, yes. But even more important is that the experimentation be done as part of an overall optimization plan with tests targeted by behavioral and VoC analytics to specific experiences where the opportunity for improvement is highest. If all you’re thinking about is how many experiments you run, you’re not doing it right. Every type of customer and every part of their journey should have tests targeted toward its improvement.

Similarly on the marketing side, phase II is about optimizing against the unified measurement framework with both mix and control group testing. Mix is a top-down approach that works against your overall spending – regardless of channel type or individual measurement. Control group testing is nothing more than experimentation in the marketing world. Control groups have been a key part of marketing since the early direct response days. They’re easier to implement and more accurate in establishing true lift and incrementality than mathematical attribution solutions.

The drive toward continuous improvement doesn’t end there, however. I’m a big fan for tool-based reporting as a key part of the second phase of analytics driven transformation. The idea behind tool-based reporting is simple but profound. Instead of reports as static, historical tools to describe what happened, the idea is that reports contain embedded predictive models that transform them into tools that can be used to understand the levers of the business and test what might happen based on different business strategies. Building tool-based reports for marketing, for product launch, for conversion funnels and for other key digital systems is deeply transformative. I describe this as shift in the organization from democratizing data to democratizing knowledge. Knowledge is better. But the advantages to tool-based reporting run even deeper. The models embedded in these reports are your best analytic thinking about how the business works. And guess what? They’ll be wrong a lot of the time and that’s a good thing. It’s a good thing because by making analytically thinking about how the business works explicit, you’ve created feedback mechanisms in the organization. When things don’t work out the way the model predicts, your analysts will hear about it and have to figure out why and how to do better. That drives continuous improvement in analytics.

A fourth key part of creating the agile enterprise – at least for sites without direct ecommerce – is value-based optimization. One of the great sins in digital measurement is leaving gaps in your ability to measure customers across their journey. I call this “closing measurement loops”. If you’re digital properties are lead generating or brand focused or informational or designed to drive off-channel or off-property (to Amazon or to a Call-Center), it’s much harder to measure whether or not they’re successful. You can measure proxies like content consumption or site satisfaction, but unless these proxies actually track to real outcomes, you’re just fooling yourself. This is important. To be good at digital and to use measurement effectively, every important measurement gap needs to be closed. There’s no one tool or method for closing measurement gaps, instead, a whole lot of different techniques with a bunch of sweat is required. Some of the most common methods for closing measurement gaps include re-survey, panels, device binding and dynamic 800 numbers.

Lastly, a key part of this whole phase is training the organization to think in terms of continuous improvement. That doesn’t happen magically and while all of the initiatives described here support that transformation, they aren’t, by themselves, enough. In my two posts on building analytics culture, I laid out a fairly straightforward vision of culture. The basic idea is that you build analytics culture my using data and analytics. Not by talking about how important data is or how people should behave. In the beginning was the deed.

Creating a constant cadence of analytics-based briefings and discussions forces the organization to think analytically. It forces analysts to understand the questions that are meaningful to the business. It forces decision-makers to reckon with data and lets them experience the power of being able to ask questions and get real answers. Just the imperative of having to say something interesting is good discipline for driving continuous improvement.

foundational transformation Step 2

That’s phase two of enterprise digital transformation. It’s all about baking continuous improvement into the organization and building on top of each element of the foundation the never ending process of getting better.

 

You might think that’s pretty much all there is to the analytics side of the digital transformation equation. Not so. In my next post, I’ll cover the next phase of analytics transformation – driving big analytics wins. So far, most of what I’ve covered is valid for any enterprise in any industry. But in the next phase, initiatives tend to be quite different depending on your industry and business model.

See you after the Hub!

Getting Started with Digital Transformation

For most of this year I’ve been writing an extended series on digital transformation in the enterprise. Along the way, I’ve described why organizations (particularly large ones) struggle with digital, the core capabilities necessary to do digital well, and ways in which organizations can build a better, more analytic culture. I’ve even put together a series of videos that describe how enterprises are currently driving digital and how they can do better.

I think both the current-state (what we do wrong) and the end-state (doing digital right) are compelling. In the next few posts, I’m going to wrap this series up with a discussion around how you get from here to there.

I don’t suppose anyone thinks the journey from here to there is trivial. Doing digital the way I’ve described it (see the Agile Organization) involves some pretty fundamental change: change to the way enterprises budget, change to the way they organize, and change to the way they do digital at almost every level. It also involves, and this is totally unsurprising, investments in people and technology and more than a dollop of patience. It would actually be much easier to build a good digital organization from scratch than to adapt the pieces that exist in the typical enterprise.

Change is harder than creation. It has more friction and more fail points. But change is the reality for most enterprise.

So where do you start and how do you go about building a great digital organization?

I’m going to answer that question here from an analytics perspective. That’s the easy part. Once I’ve worked through the steps in building analytics maturity and digital decisioning, I’ll tackle the organizational component, wherein I expect to hazard a series of guesses, speculation and unlikely theory to paper over the fact that almost no one has done this transformation successfully and every organization has fundamentally unique structures and people that make its dynamics deeply specific.

The foundation of any analytics program is, of course, data. One of the most satisfying developments in digital analytics in the past 3-5 years has been the dramatic improvement in the state of data collection. It used to be that EVERY engagement we undertook began with a plodding slog through data auditing and clean-up. These days, that’s more the exception than the rule. Still, there are plenty of exceptions. So the first step in just about any analytics effort is to make sure the data foundation is solid. There’s a second aspect to this that’s worth pointing out. For a lot of my clients, basic data collection is no longer much of an issue. But even where that’s true, there are often significant gaps in digital analytics data collection for personalization. So many Adobe designs are predicated on meeting reporting requirements that it’s not at all unusual for key personalization elements like filtering selections, image expansions, sorting behaviors and DHTML exposures to go largely untracked. That’s true on both the Web and Mobile sides. Part of auditing your data collection should be a careful look at whether your capturing all the personalization cues you could – and that’s often a critical foundational element for the steps to follow.

Right along with auditing your data collection comes building a comprehensive customer journey framework. I’ve added the word “framework” here not to be all “consulty” but to emphasize that a customer journey isn’t built once as a static map. That’s the old way – and it’s wrong in every respect (so be careful what you buy). It’s wrong because it’s not segmented. It’s wrong because it’s too high-level. And most of all it’s wrong because it’s too static. So while a customer journey framework is more a capability and a process than a “thing”, it’s also true that you have to start somewhere. Getting that initial segmented journey map in place provides the high-level strategic framework for your digital strategy and for your analytics and testing. It’s the key strategic piece welding your operational capabilities to your strategic vision.

My third foundational building block is (Chorus sings refrain) “2-Tiered segmentation”. I’ve written voluminously on digital segmentation and how it works, so I won’t add much more here. But if journey mapping is the piece linking your strategic vision to your operational capabilities, 2-tiered segmentation is the equivalent piece linking at the tactical level. At every touchpoint in a customer journey there is the need to understand who somebody is and where in their journey they are. That’s what 2-tiered segmentation provides.

Auditing your data, creating a journey mapping and tying that to a digital segmentation are truly foundational. They are all “you can’t get there from here without going through these” kind of activities. Almost every significant report, analysis and decision that you make will rely on these three activities.

That’s not really true for my next two foundational activities. I chose building an integrated voice of customer (VoC) capability as my fourth key building block. If you’ve read my book, you know that one of the main uses for a VoC program is to refine and tune your journey map and segmentation. So in one sense, this capability may be prior to either of those. But you can do enough VoC to support those two activities without really building a full VoC program. And what I have in mind here is a full program. What do I mean by a full program? I mean an enterprise feedback management system that makes it easy to deploy surveys at any point in the journey across any device. I mean a set of organizational processes that ideate, design, deploy, interpret and socialize VoC information constantly. I mean an enterprise-wide reporting capability that integrates different VoC sources, classifies them, tracks them, and provides drill-down (and that’s important because VoC data is virtually useless without cross-tabulation) access to them across the organization. I also mean a culture where one of the natural and immediate parts of making a decision is looking at what customer’s think and – if that isn’t available – launching a survey to figure it out. I put VoC as part of this foundational set because I think it’s one of the easiest ways to deliver real wins to the organization. I also like the idea of driving a combination of tactical (data, segmentation) and strategic (journey, VoC) initiatives in your early phases. As I’ve pointed out elsewhere, we analytics folks tend to over-focus on the tactical.

Finally, I’ve included building a campaign measurement framework into the initial set of foundational activities. This might not be the right choice for every organization, but if you spend a significant amount of money on marketing, it’s a critical element in evolving your maturity. Like data audits, a lot of my clients are already pretty good at this. For many folks, campaigns are already measured using a pretty rich and well-thought out framework and the pain point tends to be deeper – around attribution and mix. But I also see organizations jumping right to questions of attribution before they’ve really done the work necessary to pick the right KPIs to optimize against. That’s a prescription for disaster. If you don’t put in the intellectual sweat equity to understand how campaigns should be measured (and it’s often surprisingly complicated in real-world businesses where conversion rate is rarely the be-all-and-end-all of optimization), then your attribution modelling is doomed to fail.

So here’s the first five things to tackle in building out the analytics part of a digital transformation effort:

foundational Transformation Step 1Small

These five activities provide a rich foundation for analytics driven transformation along with some core strategic analytic capabilities. I’ll cover what comes after this in my next post.

Digital Transformation of the Enterprise (with a side of Big Data)

Since I finished Measuring the Digital World and got back to regular blogging, I’ve been writing an extended series on the challenges of digital in the enterprise. Like many analysts, I’m often frustrated by the way our clients approach decision-making. So often, they lack any real understanding of the customer journey, any effective segmentation scheme, any real method for either doing or incorporating analytics into their decisioning, anything more than a superficial understanding of their customers, and anything more than the empty façade of a testing program. Is it any surprise that they aren’t very good at digital? This would be frustrating but understandable if companies simply didn’t invest in these capabilities. They aren’t magic, and no large enterprise can do these things without making a significant investment. But, in fact, many companies have invested plenty with very disappointing results. That’s maddening. I want to change that – and this series is an extended meditation on what it takes to do better and how large enterprises might truly gain competitive advantage in digital.

I hope that reading these posts is useful to people, but I know, too, that it’s hard to get the time. Heaven knows I struggle to read the stuff I’d like to. So I took advantage of the slow time over the holidays to do something that’s been on my wish list for about 2 years now – take some of the presentations I do and turn them into full online webinars. I started with a whole series that captures the core elements of this series – the challenge of digital transformation.

There are two versions of this video series. The first is a set of fairly short (2-4 minute) stories that walk through how enterprise decision-making gets done, what’s wrong with the way we do it, and how we can do better. It’s a ten(!) part series and meant to be tackled in order. It’s not really all that long…like I said, most of the videos are just 2-4 minutes long. I’ve also packaged up the whole story (except Part 10) in single video that runs just a little over 20 minutes. It’s shorter than viewing all 10 of the others, but you need a decent chunk of uninterrupted time to get at it. If you’re really pressed and only want to get the key themes without the story, you can just view Parts 8-10.

Here’s the video page that has all of these laid out in order:

Digital Transformation Video Series

Check it out and let me know what you think! To me it seems like a faster, better, and more enjoyable way to get the story about digital transformation and I’m hoping it’s very shareable as well. If you’re struggling to get analytics traction in your organization, these videos might be an easy thing to share with your CMO and digital channel leads to help drive real change.

I have to say I enjoyed doing these a lot and they aren’t really hard to do. They aren’t quite professional quality, but I think they are very listenable and I’ll keep working to make them better. In fact, I enjoyed doing the digital transformation ones so much that I knocked out another this last week – Big Data Explained.

This is one of my favorite presentations of all time – it’s rich in content and intellectually interesting. Big data is a subject that is obscured by hype, self-interest, and just plain ignorance; everyone talks about it but no one has a clear, cogent explanation of what it is and why it’s important. This presentation deconstructs the everyday explanation about big data (the 4Vs) and shows why it misses the mark. But it isn’t designed to merely expose the hype, it actually builds out a clear, straightforward and important explanation of why big data is real, why it challenges common IT and analytics paradigms, and how to understand whether a problem is a big data problem…or not. I’ve written about this before, but you can’t beat a video with supporting visuals for this particular topic. It’s less than fifteen minutes and, like the digital transformation series, it’s intended for a wide audience. If you have decision-makers who don’t get big data or are skeptical of the hype, they’ll appreciate this straightforward, clear, and no-nonsense explication of what it is.

You can get it on my video page or direct on Youtube

This is also a significant topic toward the end of Measuring the Digital World where I try to lay out a forward looking plan for digital analytics as a discipline.

I’m planning to do a steady stream of these videos throughout the year so I’d love thoughts/feedback if you have suggestions!

Next week I hope to have an update on my EY Counseling Family’s work in the 538 Academy Awards challenge. We’ve built our initial Hollywood culture models – it’s pretty cool stuff and I’m excited to share the results. Our model may not be as effective as some of the other challengers (TBD), but I think it’s definitely more fun.

Building Analytics Culture – One Decision at a Time

In my last post, I argued that much of what passes for “building culture” in corporate America is worthless. It’s all about talk. And whether that talk is about diversity, ethics or analytics, it’s equally arid. Because you don’t build culture by talking. You build culture though actions. By doing things right (or wrong if that’s the kind of culture you want). Not only are words not effective in building culture, they can be positively toxic. When words and actions don’t align, the dishonesty casts other – possibly more meaningful words – into disrepute. Think about which is worse – a culture where bribery is simply the accepted and normal way of getting things done (and is cheerfully acknowledged) and one where bribery is ubiquitous but is cloaked behind constant protestations of disinterest and honesty? If you’re not sure about your answer, take it down to a personal level and ask yourself the same question. Do we not like an honest villain better than a hypocrite? If hypocrisy is the compliment vice pays to virtue, it is a particularly nasty form of flattery.

What this means is that you can’t build an analytics culture by telling people to be data driven. You can’t build an analytics culture by touting the virtues of analysis. You can’t even build an analytics culture by hiring analysts. You build an analytics culture by making good (data-driven) decisions.

That’s the only way.

But how do you get an organization to make data-driven decisions? That’s the art of building culture. And in that last post, I laid out seven (a baker’s half-dozen?) tactics for building good decision-making habits: analytic reporting, analytics briefing sessions, hiring a C-Suite analytics advisor, creating measurement standards, building a rich meta-data system for campaigns and content, creating a rapid VoC capability and embracing a continuous improvement methodology like SPEED.

These aren’t just random parts of making analytic decisions. They are tactics that seem to me particularly effective in driving good habits in the organization and building the right kind of culture. But seven tactics doesn’t nearly exhaust my list. Here’s another set of techniques that are equally important in helping drive good decision-making in the organization (my original list wasn’t in any particular order so it’s not like the previous list had all the important stuff):

Yearly Agency Performance Measurement and Reviews

What it is: Having an independent annual analysis of your agency’s performance. This should include review of goals and metrics, consideration of the appropriateness of KPIs and analysis of variation in campaign performance along three dimensions (inside the campaign by element, over time, and across campaigns). This must not be done by the agency itself (duh!) or by the owners of the relationship.

Why it builds culture: Most agencies work by building strong personal relationships. There are times and ways that this can work in your favor, but from a cultural perspective it both limits and discourages analytic thinking. I see many enterprises where the agency is so strongly entrenched you literally cannot criticize them. Not only does the resulting marketing nearly always suck, but this drains the life out of an analytics culture. This is one of many ways in which building an analytic culture can conflict with other goals, but here I definitely believe analytics should win. You don’t need a too cozy relationship with your agency. You do need objective measurement of their performance.

 

Analytics Annotation / Collaboration Tool like Insight Rocket

What it is: A tool that provides a method for rich data annotation and the creation and distribution of analytic stories across the analytics team and into the organization. In Analytic Reporting, I argued for a focus on democratizing knowledge not data. Tools like Insight Rocket are a part of that strategy, since they provide a way to create and rapidly disseminate a layer of meaning on top of powerful data exploration tools like Tableau.

Why it builds culture: There aren’t that many places where technology makes much difference to culture, but there are a few. As some of my other suggestions make clear, you get better analytics culture the more you drive analytics across and into the organization (analytic reporting, C-Suite Advisor, SPEED, etc.). Tools like Insight Rocket have three virtues: they help disseminate analytics thinking not just data, they boost analytics collaboration making for better analytic teams, and they provide a repository of analytics which increases long-term leverage in the enterprise. Oh, here’s a fourth advantage, they force analysts to tell stories – meaning they have to engage with the business. That makes this piece of technology a really nice complement to my suggestion about a regular cadence of analytics briefings and a rare instance of technology deepening culture.

 

In-sourcing

What it is: Building analytics expertise internally instead of hiring it out and, most especially, instead of off-shoring it.

Why it builds culture: I’d be the last person to tell you that consulting shouldn’t have a role in the large enterprise. I’ve been a consultant for most of my working life. But we routinely advise our clients to change the way they think about consulting – to use it not as a replacement for an internal capability but as a bootstrap and supplement to that capability. If analytics is core to digital (and it is) and if digital is core to your business (which it probably is), then you need analytics to be part of your internal capability. Having strong, capable, influential on-shore employees who are analysts is absolutely necessary to analytics culture. I’ll add that while off-shoring, too, has a role, it’s a far more effective culture killer than normal consulting. Off-shoring creates a sharp divide between the analyst and the business that is fatal to good performance and good culture on EITHER side.

 

Learning-based Testing Plan

What it is: Testing plans that include significant focus on developing best design practices and resolving political issues instead of on micro-optimizations of the funnel.

Why it works: Testing is a way to make decisions. But as long as its primary use is to decide whether to show image A or image B or a button in this color or that color, it will never be used properly. To illustrate learning-based testing, I’ve used the example of video integration – testing different methods of on-page video integration, different lengths, different content types and different placements against each key segment and use-case to determine UI parameters for ALL future videos. When you test this way, you resolve hundreds of future questions and save endless future debate about what to do with this or that video. That’s learning based testing. It’s also about picking key places in the organization where political battles determine design – things like home page real-estate and the amount of advertising load on a page – and resolving them with testing; that’s learning based testing, too. Learning based testing builds culture in two ways. First, in and of itself, it drives analytic decision-making. Almost as important, it demonstrates the proper role of experimentation and should help set the table for decision-makers tests to ask for more interesting tests.

 

Control Groups

What it is: Use of control groups to measure effectiveness whenever new programs (operational or marketing) are implemented. Control groups use small population subsets chosen randomly from a target population who are given either no experience or a neutral (existing) experience instead. Nearly all tests feature a baseline control group as part of the test, but the use of control groups transcends A/B testing tools. Use of control groups common in traditional direct response marketing and can be used in a wide variety of on and offline contexts (most especially as I recently saw Elea Feit of Drexel hammer home at the DAA Symposium – as a much more effective approach to attribution).

Why it works: One of the real barriers to building culture is a classic problem in education. When you first teach students something, they almost invariably use it poorly. That can sour others on the value of the knowledge itself. When people in an organization first start using analytics, they are, quite inevitably, going to fall into the correlation trap. Correlation is not causation. But in many cases, it sure looks like it is and this leads to many, many bad decisions. How to prevent the most common error in analytics? Control groups. Control groups build culture because they get decision-makers thinking the right way about measurement and because they protect the organization from mistakes that will otherwise sour the culture on analytics.

 

Unified Success Framework

What it is: A standardized, pre-determined framework for content and campaign success measurement that includes definition of campaign types, description of key metrics for those types, and methods of comparing like campaigns on an apples-to-apples basis.

Why it works: You may not be able to make the horse drink, but leading it to water is a good start. A unified success framework puts rigor around success measurement – a critical part of building good analytics culture. On the producer side, it forces the analytics team to make real decisions about what matters and, one hopes, pushes them to prove that proxy measures (such as engagement) are real. On the consumer side, it prevents that most insidious destroyer of analytics culture, the post hoc success analysis. If you can pick your success after the game is over, you’ll always win.

 

The Enterprise VoC Dashboard

What it is: An enterprise-wide state-of-the-customer dashboard that provides a snapshot and trended look at how customer attitudes are evolving. It should include built in segmentation so that attitudinal views are ALWAYS shown sliced by key customer types with additional segmentation possible.

Why it works: There are so many good things going on here that it’s hard to enumerate them all. First, this type of dashboard is one of the best ways to distill customer-first thinking in the organization. You can’t think customer-first, until you know what the customer thinks. Second, this type of dashboard enforces a segmented view of the world. Segmentation is fundamental to critical thinking about digital problems and this sets the table for better questions and better answers in the organization. Third, opinion data is easier to absorb and use than behavioral data, making this type of dashboard particularly valuable for encouraging decision-makers to use analytics.

 

Two-Tiered Segmentation

What it is: A method that creates two-levels of segmentation in the digital channel. The first level is the traditional “who” someone is – whether in terms of persona or business relationship or key demographics. The second level captures “what” they are trying to accomplish. Each customer touch-point can be described in this type of segmentation as the intersection of who a visitor is and what their visit was for.

Why it works: Much like the VoC Dashboard, Two-Tiered Segmentation makes for dramatically better clarity around digital channel decision-making and evaluation of success. Questions like ‘Is our Website successful?’ get morphed into the much more tractable and analyzable question ‘Is our Website successful for this audience trying to do this task?’. That’s a much better question and big part of building analytics culture is getting people to ask better questions. This also happens to be the main topic of my book “Measuring the Digital World” and in it you can get a full description of both the power and the methods behind Two-Tiered Segmentation.

 

I have more, but I’m going to roll the rest into my next post on building an agile organization since they are all deeply related to the integration of capabilities in the organization. Still, that’s fifteen different tactics for building culture. None of which include mission statements, organizational alignment or C-Level support (okay, Walking the Walk is kind of that but not exactly and I didn’t include it in the fifteen) and none of which will take place in corporate retreats or all-hands conferences. That’s a good thing and makes me believe they might actually work.

Ask yourself this: is it possible to imagine an organization that does even half these things and doesn’t have a great analytics culture? I don’t think it is. Because culture just is the sum of the way your organization works and these are powerful drivers of good analytic thinking. You can imagine an organization that does these things and isn’t friendly, collaborative, responsible, flat, diverse, caring or even innovative. There are all kinds of culture, and good decision-making isn’t the only aspect of culture to care about*. But if you do these things, you will have an organization that makes consistently good decisions.

*Incidentally, if you want to build culture in any of these other ways, you have to think about similar approaches. Astronomers have a clever technique for seeing very faint objects called averted vision. The idea is that you look just to the side of the object if you want to get the most light-gathering power from your eyes. It’s the same with culture. You can’t tackle it head-on by talking about it. You have to build it just a little from the side!