Tag Archives: Digital Analytics Hub

A Guided Tour through Digital Analytics (Circa 2016)

I’ve been planning my schedule for the DA Hub in late September and while I find it frustrating (so much interesting stuff!), it’s also enlightening about where digital analytics is right now and where it’s headed. Every conference is a kind of mirror to its industry, of course, but that reflection is often distorted by the needs of the conference – to focus on the cutting-edge, to sell sponsorships, to encourage product adoption, etc.  With DA Hub, the Conference agenda is set by the enterprise practitioners who are leading groups – and it’s what they want to talk about. That makes the conference agenda unusually broad and, it seems to me, uniquely reflective of the state of our industry (at least at the big enterprise level).

So here’s a guided tour of my DA Hub – including what I thought was most interesting, what I choose, and why. At the end I hope that, like Indiana Jones picking the Holy Grail from a murderers row of drinking vessels, I chose wisely.

Session 1 features conversations on Video Tracking, Data Lakes, the Lifecycle of an Analyst, Building Analytics Community, Sexy Dashboards (surely an oxymoron), Innovation, the Agile Enterprise and Personalization. Fortunately, while I’d love to join both Twitch’s June Dershewitz to talk about Data Lakes and Data Swamps or Intuit’s Dylan Lewis for When Harry (Personalization) met Sally (Experimentation), I didn’t have to agonize at all, since I’m scheduled to lead a conversation on Machine Learning in Digital Analtyics. Still, it’s an incredible set of choices and represents just how much breadth there is to digital analytics practice these days.

Session 2 doesn’t make things easier. With topics ranging across Women in Analytics, Personalization, Data Science, IoT, Data Governance, Digital Product Management, Campaign Measurement, Rolling Your Own Technology, and Voice of Customer…Dang. Women in Analytics gets knocked off my list. I’ll eliminate Campaign Measurement even though I’d love to chat with Chip Strieff from Adidas about campaign optimization. I did Tom Bett’s (Financial Times) conversation on rolling your own technology in Europe this year – so I guess I can sacrifice that. Normally I’d cross the data governance session off my list. But not only am I managing some aspects of a data governance process for a client right now, I’ve known Verizon’s Rene Villa for a long time and had some truly fantastic conversations with him. So I’m tempted. On the other hand, retail personalization is of huge interest to me. So talking over personalization with Gautam Madiman from Lowe’s would be a real treat. And did I mention that I’ve become very, very interested in certain forms of IoT tracking? Getting a chance to talk with Vivint’s Brandon Bunker around that would be pretty cool. And, of course, I’ve spent years trying to do more with VoC and hearing Abercrombie & Fitch’s story with Sasha Verbitsky would be sweet. Provisionally, I’m picking IoT. I just don’t get a chance to talk IoT very much and I can’t pass up the opportunity. But personalization might drag me back in.

In the next session I have to choose between Dashboarding (the wretched state of as opposed to the sexiness of), Data Mining Methods, Martech, Next Generation Analytics, Analytics Coaching, Measuring Content Success, Leveraging Tag Management and Using Marketing Couds for Personalization. The choice is a little easier because I did Kyle Keller’s (Vox) conversation on Dashboarding two years ago in Europe. And while that session was probably the most contentious DA Hub group I’ve ever been in (and yes, it was my fault but it was also pretty productive and interesting), I can probably move on. I’m not that involved with tag management these days – a sign that it must be mature – so that’s off my list too. I’m very intrigued by Akhil Anumolu’s (Delta Airlines) session on Can Developers be Marketers? The Emerging Role of MarTech. As a washed-up developer, I still find myself believing that developers are extraordinarily useful people and vastly under-utilized in today’s enterprise. I’m also tempted by my friend David McBride’s session on Next Generation Analytics. Not only because David is one of the most enjoyable people that I’ve ever met to talk with, but because driving analytics forward is, really, my job. But I’m probably going to go with David William’s session on Marketing Clouds. David is brilliant and ASOS is truly cutting edge (they are a giant in the UK and global in reach but not as well known here), and this also happens to be an area where I’m personally involved in steering some client projects. David’s topical focus on single-vendor stacks to deliver personalization is incredibly timely for me.

Next up we have Millennials in the Analytics Workforce, Streaming Video Metrics, Breaking the Analytics Glass Ceiling, Experimentation on Steroids, Data Journalism, Distributed Social Media Platforms, Customer Experience Management, Ethics in Analytics(!), and Customer Segmentation. There are several choices in here that I’d be pretty thrilled with: Dylan’s session on Experimentation, Chip’s session on CEM and, of course, Shari Cleary’s (Viacom) session on Segmentation. After all, segmentation is, like, my favorite thing in the world. But I’m probably going to go with Lynn Lanphier’s (Best Buy) session on Data Journalism. I have more to learn in that space, and it’s an area of analytics I’ve never felt that my practice has delivered on as well as we should.

In the last session, I could choose from more on Customer Experience Management, Driving Analytics to the C-Suite, Optimizing Analytics Career-Oaths, Creating High-Impact Analytics Programs, Building Analytics Teams, Delivering Digital Products, Calculating Analytics Impact, and Moving from Report Monkey to Analytics Advisor. But I don’t get to choose. Because this is where my second session (on driving Enterprise Digital Transformation) resides. I wrote about doing this session in the EU early this summer – it was one of the best conversations around analytics I’ve had the pleasure of being part of. I’m just hoping this session can capture some of that magic. If I didn’t have hosting duties, I think I might gravitate toward Theresa Locklear’s (NFL) conversation on Return on Analytics. When we help our clients create new analytics and digital transformation strategies, we have to help them justify what always amount to significant new expenditures. So much of analytics is exploratory and foundational, however, that we don’t always have great answers about the real return. I’d love to be able to share thoughts on how to think (and talk) about analytics ROI in a more compelling fashion.

All great stuff.

We work in such a fascinating field with so many components to it. We can specialize in data science and analytics method, take care of the fundamental challenges around building data foundations, drive customer communications and personalization, help the enterprise understand and measure it’s performance, optimize relentlessly in and across channels, or try to put all these pieces together and manage the teams and people that come with that. I love that at a Conference like the Hub I get a chance to share knowledge with (very) like-minded folks and participate in conversations where I know I’m truly expert (like segmentation or analytics transformation), areas where I’d like to do better (like Data Journalism), and areas where we’re all pushing the outside of the envelope (IoT and Machine Learning) together. Seems like a wonderful trade-off all the way around.

See you there!
See you there!

https://www.digitalanalyticshub.com/dahub16-us/

 

Competitive Advantage and Digital Transformation – Optimizing Retail and eCommerce

In my last posts before the DA Hub, I described the first two parts of an analytics driven digital transformation. The first part covered the foundational activities that help an organization understand digital and think and decide about it intelligently. Things like customer journey, 2-tiered segmentation, a comprehensive VoC system and a unified campaign measurement framework form the core of a great digital organization. Done well, they will transform the way your organization thinks about digital. But, of course, thinking isn’t enough. You don’t build culture by talking but by doing. In the beginning was the deed. That’s why my second post dealt with a whole set of techniques for making analytics a constant part of the organization’s processes. Experimentation driven by a comprehensive analytics-driven testing plan, attribution and mix modelling, analytic reporting, re-survey, and a regular cadence of analytics driven briefings make continuous improvement a reality. If you take this seriously and execute fully on these first two phases, you will be good at digital. That’s a promise.

But as powerful, transformative and important as these first two phases are, they still represent only a fraction of what you can achieve with analytics driven-transformation. The third phase of analytics driven transformation targets areas where analytics changes the way a business operates, prices its products, communicates with and supports its customers.

The third phase of digital transformation is unique. In some ways, it’s easier than the first two phases. It involves much less organization and cultural transformation. If you done those first two phases, you’re already there when it comes to having an analytics culture. On the other hand, in this third phase the analytics projects themselves are often MUCH more complex. This is where we tackle big hard problems. Problems that require big data, advanced statistical analysis, and serious imagination. Well, that’s the fun stuff. Seriously, if you’ve gotten through the first two phases of an analytics transformation successfully, doing the projects in Phase Three is like a taking a victory lap.

There isn’t one single blueprint for the third phase of an analytics driven transformation. The work that gets done in the first two phases is surprisingly similar almost regardless of the industry or specific business. I suppose it’s like laying the foundation for a building. No matter what the building looks like, the concrete block at the bottom is going to look pretty much the same. At this third level, however, we’re above the foundation and what you do will depend mightily on your specific business.

I know that it depends on your business is not much of an answer. As a consultant, it’s not unusual to get caught up in conversations like this:

“So how much would it cost?”

“Well, that depends.”

“What kind of things does it depend on?”

“Well, it depends on how deeply you want to go into it, who you want to have do it, and how you want to get it done.”

All of this is true, of course, but none of it is helpful. I usually try to short-circuit these conversations by presenting a couple of real world alternatives.

I think this is more helpful (though it’s also more dangerous). Similarly, when I present the third phase of an analytics driven transformation I try to make it specific to the business in question. And the more I know about the business, the more pointed, interesting, and – I hope – convincing that third phase is going to look. But if I haven’t spent much time a business, I still customize that third phase by industry – picking out high-level analytics projects that are broadly applicable to everyone in the sector.

That’s what I’m going to try to do here, with the added benefit of picking a couple different industries and showing how the differences play out in this third phase. Do keep in mind, though, that the description of this third phase – unlike that of the first two – is meant to be suggestive only. No real-world third phase (certainly no optimal one) is likely to mirror what I lay out here. It might not even be very close. What’s more, unlike the first phase (at least) which is close-ended (when you’ve done the projects I suggest you’re done with that phase), phase three is open-ended. You never stop doing analytics projects at this level. And that’s a good thing.

For the first example, I decided to start with a classic retail e-commerce view of the world. It’s a sector where we all have, at the very least, a consumer’s understanding of how it works. There are many, many possible projects to choose from, but here are five I often present as a typical starting point.

The first is an analytically driven personalization program. With journey-mapping, 2-tiered segmentation and a robust experimentation program, an enterprise should be a in a good position to drive personalization. Most personalization programs bootstrap themselves by starting with fairly straightforward segmentations (already done) and rule-based personalization decisions targeted to “easy” problems like email offers and returning visitors to the Website. That’s fine. The very best way to build a personalization program is organically – build it by doing it with increasing sophistication in more and more channels and at more and more touchpoints.

Merchandising optimization is another very big opportunity. So much of the merchandising optimization I see is focused on product detail pages. That’s fine as far as it goes, but it misses the much larger opportunity to optimize merchandising on search and aisle pages via analytics. Traditional merchandising folks have been slow to understand how critical moving merchandising upstream is to effective digital performance. This turns out to be analytically both very challenging and very rich.

Assortment optimization (and I might be just as likely to pick pricing or demand signals here) has long been a domain of traditional retail analytics. As such, I have to admit I didn’t think much about it until the last few years. But I’ve come to believe that digital analytics can yield powerful preference information that is typically missing in this analysis. To do effective assortment optimization, you need to understand customer’s potential replacement options. In the offline world, this usually involves making simple guesses based on high-level product sales about which products will be substituted. Using online view data, we can do much, much better. This is a case where digital analytics doesn’t so much replace an existing technique as deepen and enrich it with data heretofore undreamed of. Assortment optimization with digital data gives you highly segmented, localized data about product substitution preferences. It’s a lot better.

I’ve become a strong advocated for a fundamental re-think of loyalty programs based on the idea that surprise-based loyalty with no formal earning system is the future of rewards programs. The advantages of surprise-based loyalty are considerable when stacked up against traditional loyalty programs. You can target rewards where you think they will create lift. You can take advantage of inventory problems or opportunities. You don’t incur ANY financial obligations. You create no customer resentment or class issues. You can scale them and localize them to work with a specially trained staff. And, of course, the biggest bonus of all – you actually create far more impact per dollar spent. Surprise-based loyalty is, inherently, analytic. You can’t really do it any other way. Where it’s an option, it’s always one of the biggest changes you can make in the way your business works.

Finally, I’ve picked digital/store integration as my fifth project for analytics-led transformation. There are a number of different ways to take this. The drives between store and site are complex, important and fruitful. Optimizing those drives should be one of the analytics priorities for any omni-channel retail. And that optimization is a combination of testing and analytics. In this case, however, I’ve chosen to focus on measuring and optimizing digital in-store experiences. You’re surely familiar with endless-aisle retail; where digital is integrated into the in-store experience. The vast majority of these physical-digital experiences have been quite ineffective. Almost always, they’ve been executed from a retail perspective. By which I mean that they’ve been built once, dropped into the store, and left to fail. That’s just not doing it right. In-store experiences are getting more digital. Digital signage is growing rapidly. Physical-digital experiences are increasingly common. But if you want actual competitive advantage out of these experiences, you’d better tackle them from a digital test-and-learn/analytics perspective. Anything less is a prescription for failure.

Digital Transformation Phase III Retail

So here’s my first round of Phase Three projects for an analytics driven transformation in retail. Each is big, complex and hard. They are also important. These are the projects that will truly transform your digital business. They are rubber-meets-the-road stuff that drive competitive advantage. It would be a mistake to try and execute on projects like this without first creating a strong analytics foundation in the organization. You’re chances of misfiring on doing or operationalizing the analytics are simply too great without that foundation. But if you don’t move past the first two phases into analytics like this, you’re missing the big stuff. You can churn out lots of incremental improvement in digital without ever touching projects like these. Those incremental improvements aren’t nothing. They may be valuable enough to justify your time and money. But if that’s all you ever do, you’ll likely find yourself wondering if it was all really worth it. Do any of these projects successfully, and you’ll never ask that question again.

Next week I’ll show a different (non-retail) set of projects and break-down what the differences tell us about how to make analytics a strategic asset.

[Just a reminder that if you’re interested in the U.S. version of the Digital Analytics Hub you can register here!]

The State of the Art in Analytics – EU Style

(You spent your vacation how?)

I spent most of the last week at the fourth annual Digital Analytics Hub Conference outside London, talking analytics. And talking. And talking. And while I love talking analytics, thank heavens I had a few opportunities to get away from the sound of my own voice and enjoy the rather more pleasing absence of sounds in the English countryside.

IMG_3757

With X Change no more, the Hub is the best conference going these days in digital analytics (full disclosure – the guys who run it are old friends of mine). It’s an immensely enjoyable opportunity to talk in-depth with serious practitioners about everything from cutting edge analytics to digital transformation to traditional digital analytics concerns around marketing analytics. Some of the biggest, best and most interesting brands in Europe were there: from digital and bricks-and-mortar behemoths to cutting-edge digital pure-plays to a pretty good sampling of the biggest consultancies in and out of the digital world.

As has been true in previous visits, I found the overall state of digital analytics in Europe to be a bit behind the U.S. – especially in terms of team-size and perhaps in data integration. But the leading companies in Europe are as good as anybody.

Here’s a sampling from my conversations:

Machine Learning

I’ve been pushing my team to grow in the machine learning space using libraries like TensorFlow to explore deep learning and see if it has potential for digital. It hasn’t been simple or easy. I’m thinking that people who talk as if you can drop a digital data set into a deep learning system and have magic happen have either:

  1. Never tried it
  2. Been trying to sell it

We’ve been having a hard time getting deep learning systems to out-perform techniques like Random Forests. We have a lot of theories about why that is, including problem selection, certain challenges with our data sets, and the ways we’ve chosen to structure our input. I had some great discussions with hardcore data scientists (and some very bright hacker analysts more in my mold) that gave me some fresh ideas. That’s lucky because I’m presenting some of this work at the upcoming eMetrics in Chicago and I want to have more impressive results to share. I’ve long insisted on the importance of structure to digital analytics and deep learning systems should be able to do a better job parsing that structure into the analysis than tools like random forests. So I’m still hopeful/semi-confident I can get better results.

In broader group discussion, one of the most controversial and interesting discussions focused on the pros-and-cons of black-box learning systems. I was a little surprised that most of the data scientist types were fairly negative on black-box techniques. I have my reservations about them and I see that organizations are often deeply distrustful of analytic results that can’t be transparently explained or which are hidden by a vendor. I get that. But opacity and performance aren’t incompatible. Just try to get an explanation of Google’s AlphaGo! If you can test a system carefully, how important is model transparency?

So what are my reservations? I’m less concerned about the black-boxness of a technique than I am its completeness. When it comes to things like recommendation engines, I think enterprise analysts should be able to consistently beat a turnkey blackbox (or not blackbox) system with appropriate local customization of the inputs and model. But I harbor no bias here. From my perspective it’s useful but not critical to understand the insides of a model provided we’ve been careful testing to make sure that it actually works!

Another huge discussion topic and one that I more in accord with was around the importance of not over-focusing on a single technique. Not only are there many varieties of machine learning – each with some advantages to specific problem types – but there are powerful analytic techniques outside the sphere of machine learning that are used in other disciplines and are completely untried in digital analytics. We have so much to learn and I only wish I had more time with a couple of the folks there to…talk!

New Technology

One of the innovations this year at the Hub was a New Technology Showcase. The showcase was kind of like spending a day with a Silicon Valley VC and getting presentations from the technology companies in their portfolio (which is a darn interesting way to spend a day). I didn’t know most of the companies that presented but there were a couple (Piwik and Snowplow) I’ve heard of. Snowplow, in particular, is a company that’s worth checking out. The Snowplow proposition is pretty simple. Digital data collection should be de-coupled from analysis. You’ve heard that before, right? It’s called Tag Management. But that’s not what Snowplow has in mind at all. They built a very sophisticated open-source data collection stack that’s highly performant and feeds directly into the cloud. The basic collection strategy is simple and modern. You send json objects that pass a schema reference along with the data. The schema references are versioned and updates are handled automatically for both backwardly compatible and incompatible updates. You can pass a full range of strongly-typed data and you can create cross-object contexts for things like visitors. Snowplow has built a whole bunch of simple templates to make it easier for folks used to traditional tagging to create the necessary calls. But you can pass anything to Snowplow – not just Web data. It’s very adaptable for mobile (far more so than traditional digital analytics systems) and really for any kind of data at all. Snowplow supports both real-time and batch – it’s a true lambda architecture. It seems to do a huge amount of the heavy lifting for you when it comes to creating a  modern cloud-based data collection system. And did I mention it’s open-source? Free is a pretty good price. If you’re looking for an independent data collection architecture and are okay with the cloud, you really should give it a look.

Cloud vs. On-Premise

DA Hub’s keynote featured a panel with analytics leaders from companies like Intel, ASOS and the Financial Times. Every participant was running analytics in the cloud (with both AWS and Azure represented though AWS had an unsurprising majority). Except for barriers around InfoSec, it’s unclear to me why ANY company wouldn’t be in the cloud for their analytics.

Rolling your own Technology

We are not sheep
We are not sheep

Here in the States, there’s been widespread adoption of open-source data technologies (Hadoop/Spark) to process and analyze digital data. But while I do see companies that have completely abandoned traditional SaaS analytics tools, it’s pretty rare. Mostly, the companies I see run both a SaaS solution to collect data and (perhaps) satisfy basic reporting needs as well as an open-source data platform. There was more interest in the people I talked to in the EU about a complete swap out including data collection and reporting. I even talked to folks who roll most of the visualization stack themselves with open-source solutions like D3. There are places where D3 is appropriate (you need complete customization of the surrounding interface, for example, or you need widespread but very inexpensive distribution), but I’m very far from convinced that rolling your own visualization solutions with open-source is the way to go. I would have said that same thing about data collection but…see above.

Digital Transformation

I had an exhilarating discussion group centered around digital transformation. There were a ton of heavy hitters in the room – huge enterprises deep into projects of digital transformation, major consultancies, and some legendary industry vets. It was one of the most enjoyable conference experiences I’ve ever had. I swear that we (most of us anyway) could have gone on another 2 hours or more – since we just scratched the surface of the problems. My plan for the session was to cover what defines excellence in digital (what do you have to be able to do digital well), then tackle how a large-enterprise that wants to transform in digital needs to organize itself. Finally, I wanted to cover the change management and process necessary to get from here to there. If you’re reading this post that should sound familiar!

Lane
It’s a long path

Well, we didn’t get to the third item and we didn’t finish the second. That’s no disgrace. These are big topics. But the discussion helped clarify my thinking – especially around organization and the very real challenges in scaling a startup model into something that works for a large enterprise. Much of the blending of teams and capabilities that I’ve been recommending in these posts on digital transformation are lessons I’ve gleaned from seeing digital pure-plays and how they work. But I’ve always been uncomfortably aware that the process of scaling into larger teams creates issues around corporate communications, reporting structures, and career paths that I’m not even close to solving. Not only did this discussion clarify and advance my thinking on the topic, I’m fairly confident that it was of equal service to everyone else. I really wish that same group could have spent the whole day together. A big THANKS to everyone there, you were fantastic!

I plan to write more on this in a subsequent post. And I may drop another post on Hub learnings after I peruse my notes. I’ve only hit on the big stuff – and there were a lot of smaller takeaways worth noting.

See you there!
See you there!

As I mentioned in my last post, the guys who run DA Hub are bringing it to Monterey, CA (first time in the U.S.) this September. Do check it out. It’s worth the trip (and the venue is  pretty special). I think I’m on the hook to reprise that session on digital transformation. And yes, that scares me…you don’t often catch lightning in a bottle twice.

Digital Transformation in the Enterprise – Creating Continuous Improvement

I’m writing this post as I fly to London for the Digital Analytics Hub. The Hub is in its fourth year now (two in Berlin and two in London) and I’ve managed to make it every time. Of course, doing these Conference/Vacations is a bit of a mixed blessing. I really enjoyed my time in Italy but that was more vacation than Conference. The Hub is more Conference than vacation – it’s filled with Europe’s top analytics practitioners in deep conversation on analytics. In fact, it’s my favorite analytics conference going right now. And here’s the good news, it’s coming to the States in September! So I have one more of these analytics vacations on my calendar and that should be the best one of all. If you’re looking for the ultimate analytics experience – an immersion in deep conversation with the some of the best analytics practitioners around – you should check it out.

I’ve got three topics I’m bringing to the Hub. Machine Learning for digital analytics, digital analytics forecasting and, of course, the topic at hand today, enterprise digital transformation.

In my last post, I described five initiatives that lay the foundation for analytics driven digital transformation. Those projects focus on data collection, journey mapping, behavioral segmentation, enterprise Voice of Customer (VoC) and unified marketing measurement. Together, these five initiatives provide a way to think about digital from a customer perspective. The data piece is focused on making sure that data collection to support personalization and segmentation is in place. The Journey mapping and the behavioral segmentation provide the customer context for every digital touchpoint – why it exists and what it’s supposed to do. The VoC system provides a window into who customers want and need and how they make decisions at every touchpoint. Finally, the marketing framework ensures that digital spend is optimized on an apples-to-apples basis and is focused on the right customers and actions to drive the business.

In a way, these projects are all designed to help the enterprise think and talk intelligently about the digital business. The data collection piece is designed to get organizations thinking about personalization cues in the digital experience. Journey mapping is designed to expand and frame customer experience and place customer thinking at the center of the digital strategy. Two-tiered segmentation serves to get people talking about digital success in terms of customer’s and their intent. Instead of asking questions like whether a Website is successful, it gets people thinking about whether the Website is successful for a certain type of customer with a specific journey intent. That’s a much better way to think. Similarly, the VoC system is all about getting people to focus on customer and to realize that analytics can serve decision-making on an ongoing basis. The marketing framework is all about making sure that campaigns and creative are measured to real business goals – set within the customer journey and the behavioral segmentation.

The foundational elements are also designed to help integrate analytics into different parts of the digital business. The data collection piece is targeted toward direct response optimization. Journey mapping is designed to help weld strategic decisions to line manager responsibilities. Behavioral segmentation is focused on line and product managers needing tactical experience optimization. VoC is targeted toward strategic thinking and decision-making, and, of course, the marketing framework is designed to support the campaign and creative teams.

If a way to think and talk intelligently about the digital enterprise and its operations is the first step, what comes next?

All five of the initiatives that I’ve slated into the next phase are about one thing – creating a discipline of continuous improvement in the enterprise. That discipline can’t be built on top of thin air – it only works if your foundation (data, metrics, framework) supports optimization. Once it does, however, the focus should be on taking advantage of that to create continuous improvement.

The first step is massive experimentation via an analytics driven testing plan. This is partly about doing lots of experiments, yes. But even more important is that the experimentation be done as part of an overall optimization plan with tests targeted by behavioral and VoC analytics to specific experiences where the opportunity for improvement is highest. If all you’re thinking about is how many experiments you run, you’re not doing it right. Every type of customer and every part of their journey should have tests targeted toward its improvement.

Similarly on the marketing side, phase II is about optimizing against the unified measurement framework with both mix and control group testing. Mix is a top-down approach that works against your overall spending – regardless of channel type or individual measurement. Control group testing is nothing more than experimentation in the marketing world. Control groups have been a key part of marketing since the early direct response days. They’re easier to implement and more accurate in establishing true lift and incrementality than mathematical attribution solutions.

The drive toward continuous improvement doesn’t end there, however. I’m a big fan for tool-based reporting as a key part of the second phase of analytics driven transformation. The idea behind tool-based reporting is simple but profound. Instead of reports as static, historical tools to describe what happened, the idea is that reports contain embedded predictive models that transform them into tools that can be used to understand the levers of the business and test what might happen based on different business strategies. Building tool-based reports for marketing, for product launch, for conversion funnels and for other key digital systems is deeply transformative. I describe this as shift in the organization from democratizing data to democratizing knowledge. Knowledge is better. But the advantages to tool-based reporting run even deeper. The models embedded in these reports are your best analytic thinking about how the business works. And guess what? They’ll be wrong a lot of the time and that’s a good thing. It’s a good thing because by making analytically thinking about how the business works explicit, you’ve created feedback mechanisms in the organization. When things don’t work out the way the model predicts, your analysts will hear about it and have to figure out why and how to do better. That drives continuous improvement in analytics.

A fourth key part of creating the agile enterprise – at least for sites without direct ecommerce – is value-based optimization. One of the great sins in digital measurement is leaving gaps in your ability to measure customers across their journey. I call this “closing measurement loops”. If you’re digital properties are lead generating or brand focused or informational or designed to drive off-channel or off-property (to Amazon or to a Call-Center), it’s much harder to measure whether or not they’re successful. You can measure proxies like content consumption or site satisfaction, but unless these proxies actually track to real outcomes, you’re just fooling yourself. This is important. To be good at digital and to use measurement effectively, every important measurement gap needs to be closed. There’s no one tool or method for closing measurement gaps, instead, a whole lot of different techniques with a bunch of sweat is required. Some of the most common methods for closing measurement gaps include re-survey, panels, device binding and dynamic 800 numbers.

Lastly, a key part of this whole phase is training the organization to think in terms of continuous improvement. That doesn’t happen magically and while all of the initiatives described here support that transformation, they aren’t, by themselves, enough. In my two posts on building analytics culture, I laid out a fairly straightforward vision of culture. The basic idea is that you build analytics culture my using data and analytics. Not by talking about how important data is or how people should behave. In the beginning was the deed.

Creating a constant cadence of analytics-based briefings and discussions forces the organization to think analytically. It forces analysts to understand the questions that are meaningful to the business. It forces decision-makers to reckon with data and lets them experience the power of being able to ask questions and get real answers. Just the imperative of having to say something interesting is good discipline for driving continuous improvement.

foundational transformation Step 2

That’s phase two of enterprise digital transformation. It’s all about baking continuous improvement into the organization and building on top of each element of the foundation the never ending process of getting better.

 

You might think that’s pretty much all there is to the analytics side of the digital transformation equation. Not so. In my next post, I’ll cover the next phase of analytics transformation – driving big analytics wins. So far, most of what I’ve covered is valid for any enterprise in any industry. But in the next phase, initiatives tend to be quite different depending on your industry and business model.

See you after the Hub!