Tag Archives: customer movement data

The Strategic Uses of In-Store Customer Journey Measurement

Store layout, promotion and staff optimization are the immediate and obvious ways to use the core data from customer journey analytics. Together, they comprise the “you” part of the equation – optimizing your operational and marketing strategies. But the uses of in-store tracking don’t end there. There’s tremendous strategic value in being to understand customer journeys – a lesson we’ve learned over and over again in digital. When it comes to omni-channel, store and experience design, and the integration of new technologies to the store, you simply can’t do the job right without in-store journey measurement.

I cover the fundamentals of why the in-store journey matters and how to build in-store customer journey data in this new post on Digital Mortar.

 

The Uses of In-store Customer Journey Data – Store Marketing

I’m working my way through the broad uses of in-store customer journey optimization. I started with Store Layout and Merchandising optimization – which is really the foundational analytic capability that this type of data provides. Today, I’ll tackle a use that’s nearly as fundamental – optimizing in-store promotions. For those of you from the digital world, you can think of these two applications as parallel to site optimization and digital marketing optimization.

Promotion Planning

In-store promotion planning is one of those constant grinds in the life of retail analysis. You never stop planning promotions and you never get good enough. With PoS data, it’s pretty easy to measure the single most important aspect of a promotion – how much it sold. It can be a lot harder, however, to answer questions about why something worked or, as is often more salient, why something didn’t. In-store measurement can fill in the gaps around performance measurement AND help develop new promotion and display strategies.

With in-store journey measurement, you can track how and whether a promotion shifted behavior. Did a promotion steer visitors to a section? Did it keep them there longer? Did it drive key milestones like staff interaction or dressing room decisions? With only PoS data, you can easily misunderstand what drove a promotion’s apparent effectiveness. Almost as important, in-store journey measurement provides unique insight into how a promotion cannibalized shopping behaviors and generated new opportunities. When you change navigation patterns in the store, you ALWAYS cannibalize some behaviors and you nearly always disadvantage some sections/products. You also create new opportunities and traffic corridors that might present additional optimization or promotion opportunities. Understanding how cannibalization and redirection worked and whether or not their impact outweighed the promotion benefits is essential to developing sound long term strategies.

And it’s not all about the customer. In digital analytics, we didn’t have to worry much about compliance issues. What you pushed to the website is what was on the website. With dozens, hundreds or thousands of stores to manage, though, pushing content and making sure it’s consistent and correctly deployed is no joke. In-store customer journey measurement provides a strong behavioral compliance check. When a promotion drives specific patterns of behavior, it’s easy to see which stores are roughly following the pattern and which aren’t – given you near real-time feedback on potential compliance issues.

 

Questions you can Answer

  • Why did a promotion work better or worse than expected?
  • How did promotions localize and were there stores that didn’t “play along”?
  • How much opportunity did promotions have to influence shopping?
  • How successful were shoppers who were exposed to the promotion?
  • Did the promotion create new “impulse” opportunities?
  • Did the promotion cannibalize other areas/products and to what extent?
  • For a potential promotion, what are they placement areas that will drive exposure to the right shopping segments?
  • Were there stores that didn’t deploy or correctly implement a promotion?

Next up? A really powerful and oft-neglected aspect of customer journey measurement – staff optimization.

Optimizing Omni-Channel with Analytics from the In-Store Customer Journey

I’m going to be co-hosting a webinar with my friend John Morrell at Datameer on Omni-Channel Analytics and using In-Store Customer Journey Data. It should be pretty cool stuff – and, of course, it’s free!

You can register here!

What is In-Store Customer Journey Data?

Analytics professionals love data and technology. So it’s easy for us (and I use “us” because I completely self-identify in both the category of analytics professional and someone who loves data and technology) to get excited about new data sources and new measurement systems – sometimes without thinking too carefully about what they are for or whether they are really useful. When I first got interested in the technologies to track in-store customer journeys, I’ll admit that its newness was a big part of its appeal. But while newness can get you through a “first date”, it can’t – by its very nature – sustain a relationship. In the last few months, as I’ve worked on designing and building our initial product, I’ve had to put a lot of thought into how in-store measurement technology can be used, what will drive real value, and what’s just “for show”. In my last post, I described using the “PoS Test” (asking whether, for any given business question, in-store customer journey data worked better or differently than PoS data) to help choose the reports and analysis that fit this new technology. But I can see that in that post I put the cart somewhat before the horse, since I didn’t really describe in-store customer journey data and it’s likely applications. I’m going to rectify that now.

To measure the in-store customer journey you track customers as they move through your physical environment. The underlying data is really a set of way-points. Each point defines a moment in time when the customer was at a specific location. This is the core journey measurement data.

By aggregating those points and then mapping them to the actual store layout, you have data about how many people entered your store, where they went, and how long they spent near or around any store section. This mapping to the store is the point where concerns about accuracy crop up. After all, the waypoints themselves don’t have any meaning. It’s only when they are overlaid on top of the store that they become interesting. The more precisely you an place the customer with respect to the store, the more you can do with the data.

By tracking key waypoints along the journey (such as dressing rooms or registers), the basic journey data can be used to help build an in-store conversion funnel. Add Point-of-Sale data (and you’d be crazy not to) and you have the full conversion funnel at a product level and all the experience that went with it. For those coming from a digital world, this may feel like the complete journey. It has everything we measure in the digital world and can support all of the same analytic techniques – from funnel analysis to functional and real-estate optimization to behavioral segmentation. But in physical retail, there’s an additional, critical component: measuring staff interactions. It’s hard to overstate the importance of human interactions in physical retail; so if you want to really map the in-store customer journey you have to add in associate interactions. For any given customer journey, you’ll want to know whether, when, how long and with whom a customer interacted.

For most stores, this combination of journey waypoint data, store mapping, PoS data, and staff interaction data is the whole of customer journey data and it’s powerful. At Digital Mortar, though, we’re trying to build a comprehensive measurement backbone for the store that includes detailed digital experiences in store (mobile, digital signage, and specialized in-store experiences) AND a set of variables that encompass the background environment for a customer visit.

In-store digital experiences are a key part of a modern retail customer journey and if you can’t integrate them into your omni-channel picture of a customer you don’t have key ingredients of the experience. I also happen to believe that custom digital experiences will be a crucial differentiator in the evolution of retail experience.

What about the background environment – what does that mean? There’s a lot more environment in physical retail than there is in digital. Weather, for example, is a critical part of the background environment – impacting store traffic but also dramatically changing in-store journeys and purchase patterns. Other important environment variables include store promotions (local and national), advertising campaigns, mall traffic and promotions, road traffic, events, what digital signage was showing and even what music was playing during a customer visit. The more environment data you have, the better chance you have of understanding individual customer journeys and figuring out what shapes them in meaningful ways.

 

Summing Up

The in-store customer journey data begins with the waypoint data. That’s the core data that describes the actual customer experience in the store. To be useful, that data has to be mapped accurately to the store layout and the merchandise. You have to know what’s THERE! Integrating PoS data provides the key success metrics you need to understand what parts of the experience worked and to build full in-store funnels. Associate interactions data adds the human part of the experience and opens the door to meaningful staffing optimization. And the picture is completed by adding in digital interaction data and as much background data as you can get – particularly key facts about weather and promotions. Taken together, this data provides remarkable insight into the in-store funnel and customer experience. And to prove it, my next post will tackle the actual uses of this data and the business questions it can (and should) answer!